Is it possible to predict academic performance? An analysis from educational technology
DOI:
https://doi.org/10.12795/revistafuentes.2021.14278Keywords:
Academic achievement; education; educational technology; educational computing; educational evaluation; higher education; learning; literature reviews.Abstract
Predicting academic performance is a key element in education, allowing teachers to design preventive didactic actions. Various computational disciplines are involved in this predictive process, with learning analytics, machine learning, educational data mining, artificial neural networks, and fuzzy theories being the most frequently used. A systematic review of the scientific literature (2010-March 2020) indexed in Scopus, IEEE , ACM Digital Library and Springer is presented, with the aim of evaluating how academic performance prediction has behaved in two scenarios: (1) studies online (online) and blended; and (2) technological support for the face-to-face modality. The article concludes with the determination of the trends between the disciplines of educational technologies and the variables of academic performance.
Downloads
References
Adán-Coello, J. M., & Tobar, C. M. (2016). Using Collaborative Filtering Algorithms for Predicting Student Performance. Lecture Notes in Computer Science, 9831 LNCS, 206–218. https://doi.org/10.1007/978-3-319-44159-7_15
Adil, M., Tahir, F., & Maqsood, S. (2018). Predictive Analysis for Student Retention by Using Neuro-Fuzzy Algorithm. 2018 10th Computer Science and Electronic Engineering (CEEC) (pp. 41-45). Colchester, United Kingdom, United Kingdom.
Akçapınar, G., Altun, A., & Aşkar, P. (2015). Modeling Students’ Academic Performance Based on Their Interactions in an Online Learning Environment. Elementary Education Online, 14(3).
Altaf, S., Soomro, W., & Rawi, M. I. M. (2019). Student Performance Prediction using Multi-Layers Artificial Neural Networks. En 2019 3rd International Conference on Information System and Data Mining-ICISDM 2019 (pp.59-64). Houston TX USA.
Ameen, A., Alabi, M., & Adewole, K (2019). Students’ academic performance and dropout prediction: A review. Malaysian Journal of Computing 4 (2), 278-303. https://doi.org/10.24191/mjoc.v4i2.6701
Amelia, N., Gafar, A., & Mulyadi, Y (2019). Meta-analysis of student performance assessment using fuzzy logic. Indonesian Journal of Science and Technology (IJoST), 4 (1), 74-88. https://doi.org/10.17509/ijost.v4i1.15804
Amoo, M. A., Alaba, O. B., & Usman, O. L. (2018). Predictive modelling and analysis of academic performance of secondary school students: Artificial Neural Network approach. International Journal of Science and Technology Education Research, 9(1), 1–8. https://doi.org/10.5897/ijster2017.0415
Arsad, P. M., Buniyamin, N., & Ab Manan, J. (2014). Neural Network and Linear Regression methods for prediction of students’ academic achievement. 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 916-921).
Arsad, P. M., Buniyamin, N., & Manan, J. A. (2013). A neural network students’ performance prediction model (NNSPPM). 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA).
Benablo, C. I. P., Sarte, E. T., Dormido, J. M. D., & Palaoag, T. (2018). Higher Education Student’s Academic Performance Analysis through Predictive Analytics. En 2018 7th International Conference on Software and Computer Applications - ICSCA 2018 (pp.238-242).
Borgobello, A., & Roselli, N. (2016). Rendimiento académico e interacción sociocognitiva de estudiantes en un entorno virtual. Educação E Pesquisa, 42(2), 359-374. https://doi.org/10.1590/S1517-9702201606143478
Bydžovská, H. (2015). Student Performance Prediction Using Collaborative Filtering Methods. Artificial Intelligence in Education, 550–553. https://doi.org/10.1007/978-3-319-19773-9_59
Cáceres, P., Rodríguez-García, A.M., Gómez, G., & Rodríguez, C. (2020). Learning analytics in higher education: a review of impact scientific literature. IJERI: International Journal of Educational Research and Innovation, (13), 32-46.
Castrillón, O., Sarache, W., & Ruiz-Herrera, S. (2020). Predicción del rendimiento académico por medio de técnicas de inteligencia artificial. Formación universitaria, 13(1),93-102.
Cea d´Ancona, Mª.A. (2001). Metodología cuantitativa. Estrategias y técnicas de investigación social. Madrid, Síntesis.
Chango, W., Cerezo, R., & Romero, C. (2019). Predicting academic performance of university students from multi-sources data in blended learning. En Second International Conference on Data Science, E-Learning and Information Systems - DATA ’19.
Cheng, J.J., & Do, H. Q (2014). A cooperative Cuckoo Search – hierarchical adaptive neuro-fuzzy inference system approach for predicting student academic performance. Journal of Intelligent y Fuzzy Systems, 27, 2551–2561. https://doi.org/10.3233/IFS-141229
Cuji, B., Gavilanes, W., & Sánchez, R (2017). Modelo predictivo de deserción estudiantil basado en arboles de decisión. Revista Espacios, 38 (55), 1-27.
Del Rio, C., & Pineda, J (2016). Predicting academic performance in traditional environments at higher-education institutions using data mining: A review. ECOS DE LA ACADEMIA,2,(4).185-201.
De-La-Hoz, E., De-La-Hoz, E., & Fontalvo, T. (2019). Metodología de Aprendizaje Automático para la Clasificación y Predicción de Usuarios en Ambientes Virtuales de Educación. Información tecnológica, 30(1), 247-254. https://dx.doi.org/10.4067/S0718-07642019000100247
Dharmasaroja, P., & Kingkaew, N (2016). Application of artificial neural networks for prediction of learning performances. En 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) (pp. 745–751) Changsha, China.
Do, Q. H., & Chen, J.F. (2013). A Neuro-Fuzzy Approach in the Classification of Students’ Academic Performance. Computational Intelligence and Neuroscience, 1–7. https://doi.org/10.1155/2013/179097
Fedriani, E., & Romano, I. (2017). Fuzzy-Set Qualitative Comparative Analysis to Determine Effects from Socio-Economical Factors and University Students Performance. Revista De Métodos Cuantitativos Para La Economía Y La Empresa, 24, Páginas 250 a 269.
Fernández-Mellizo, M., & Constante-Amores, A. (2020). Determinantes del rendimiento académico de los estudiantes de nuevo acceso a la Universidad Complutense de Madrid. Revista de educación, 387, 213-231. https://doi.org/10.4438/1988-592X-RE-2020-387-433
Garcia, E. P. I., & Mora, P. M. (2011). Model Prediction of Academic Performance for First Year Students. En 2011 10th Mexican International Conference on Artificial Intelligence (pp.169-174), Puebla, Mexico.
García-Martín, S., & Cantón-Mayo, I. (2019). Use of technologies and academic performance in adolescent students. Comunicar, 59, 73-81. https://doi.org/10.3916/C59-2019-07
Gutiérrez, F., Seipp, K., Ochoa, X., Chiluiza, K., Laet, T. D., & Verbert, K. (2020). LADA: A learning analytics dashboard for academic advising. Computers in Human Behavior, 107, 1-13. https://doi.org/10.1016/j.chb.2018.12.004
Hai-tao, P., Ming-qu, F., Hong-bin, Z., Bi-zhen, Y., Jin-jiao, L., Chun-Fang, L., Yan-ze, Z., & Rui, S. (2020). Predicting academic performance of students in Chinese-foreign cooperation in running schools with graph convolutional network. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-05045-9
Halpern, D., Piña, M., & Ortega-Gunckel, C. (2020). School performance: New multimedia resources versus traditional notes. Comunicar, 64, 39-48. https://doi.org/10.3916/C64-2020-04
Hamsa, H., Indiradevi, S., & Kizhakkethottam, J. J. (2016). Student Academic Performance Prediction Model Using Decision Tree and Fuzzy Genetic Algorithm. Procedia Technology, 25, 326–332. https://doi.org/10.1016/j.protcy.2016.08.114
Hasan, R., Palaniappan, S., Raziff, A. R. A., Mahmood, S., & Sarker, K. U. (2018). Student Academic Performance Prediction by using Decision Tree Algorithm. En 2018 4th International Conference on Computer and Information Sciences (ICCOINS) (pp.1-5). Kuala Lumpur, Malaysia.
Hellas, A., Liao, S. N., Ihantola, P., Petersen, A., Ajanovski, V. V., Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., Messom, C., & Liao, S. (2018). Predicting academic performance: a systematic literature review. Proceedings Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education - ITiCSE 2018 (pp. 175-199). Companion. Larnaca Cyprus.
Herodotou, C., Rienties, B., Boroowa, A., Zdrahal, Z., & Hlosta, M. (2019). A large-scale implementation of predictive learning analytics in higher education: the teachers’ role and perspective. Educational Technology Research and Development. https://doi.org/10.1007/s11423-019-09685-0
Herodotou, C., Rienties, B., Boroowa, A., Zdrahal, Z., Hlosta, M., & Naydenova, G. (2017). Implementing predictive learning analytics on a large scale: The teacher’s perspective. En Seventh International learning analytics y knowledge conference (pp.267-271), Vancouver, British Columbia.
Herodotou, C., Rienties, B., Hlosta, M., Boroowa, A., Mangafa, C., & Zdrahal, Z. (2020). The scalable implementation of predictive learning analytics at a distance learning university: Insights from a longitudinal case study. The Internet and Higher Education,45, 100725. https://doi.org/10.1016/j.iheduc.2020.100725
Herodotou, C., Rienties, B., Verdin, B., & Boroowa, A. (2019). Predictive learning analytics ‘at scale’: Guidelines to successful implementation in higher education. Journal of Learning Analytics, 6(1), 85–95.
Hidayah, I., Permanasari, A. E., & Ratwastuti, N. (2013). Student classification for academic performance prediction using neuro fuzzy in a conventional classroom. En 2013 International Conference on Information Technology and Electrical Engineering (ICITEE). Yogyakarta, Indonesia.
Hirokawa, S. (2018). Key attribute for predicting student academic performance. En 10th International Conference on Education Technology and Computers - ICETC ’18 (pp.308-313). Tokyo Japan.
Jafari Petrudi, S. H., Pirouz, M., & Pirouz, B. (2013). Application of fuzzy logic for performance evaluation of academic students. En 2013 13th Iranian Conference on Fuzzy Systems (IFSC).
Jembere, E., Rawatlal, R., & Pillay, A. W. (2017). Matrix Factorisation for Predicting Student Performance. En 2017 7th World Engineering Education Forum (WEEF) (pp.513–518). Kuala Lumpur, Malaysia.
La Red, D. L., & Podestá, C. E.(2014). Metodología de Estudio del Rendimiento Académico Mediante la Minería de Datos. Campus virtuales, 3(1), 56-73. http://www.uajournals.com/campusvirtuales/journal/4/5.pdf
La Red, D. L., Karanik, M., Giovannini, M., & Pinto, N. (2015). Perfiles de Rendimiento Académico: Un Modelo basado en Minería de datos. Campus Virtuales, 4(1). 12-30.
Leon, F., & Popescu, E. (2017). Using Large Margin Nearest Neighbor Regression Algorithm to Predict Student Grades Based on Social Media Traces. In: Vittorini P. et al. (eds) Methodologies and Intelligent Systems for Technology Enhanced Learning. MIS4TEL 2017. Advances in Intelligent Systems and Computing, vol 617. Springer, Cham
Li, Z., Shang, C., & Shen, Q. (2016). Fuzzy-clustering embedded regression for predicting student academic performance. En 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp.344-351), Vancouver, BC, Canada.
Ma, C., Yao, B., Ge, F., Pan, Y., & Guo, Y. (2017). Improving Prediction of Student Performance based on Multiple Feature Selection Approaches. En 2017 International Conference on E-Education, E-Business and E-Technology ICEBT 2017 (pp.38-43). Toronto, Canada.
Maitra, S., Eshrak, S., Bari, A., Al-Sakin, A., Hossain,R., Akter, N., & Haque, Z (2019). Prediction of Academic Performance Applying NNs: A Focus on Statistical Feature-Shedding and Lifestyle. International Journal of Advanced Computer Science and Applications(IJACSA),10(9),561-70. http://dx.doi.org/10.14569/IJACSA.2019.0100974
Maitra, S., Madan, S., & Mahajan, P. (2018). An Adaptive Neural Fuzzy Inference System for prediction of student performance in Higher Education. 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). Greater Noida (UP) (pp.1158-1163), India, India.
Martinez-Rodriguez, R. A., Alvarez-Xochihua, O., Mejia Victoria, O. D., Jordan Aramburo, A., & Gonzalez Fraga, J. A. (2019). Use of Machine Learning to Measure the Influence of Behavioral and Personality Factors on Academic Performance of Higher Education Students. IEEE Latin America Transactions, 17(04), 633–641. https://doi.org/10.1109/TLA.2019.8891928
Matcha, W., Gašević, D., Uzir, N. A., Jovanović, J., & Pardo, A. (2019). Analytics of Learning Strategies. En 9th International Conference on Learning Analytics y Knowledge - LAK19 (pp.461-470). Tempe AZ USA.
Meca, I., Mollá-Campello, N., & Rabasa, A (2019). A new methodology for early warning of critical academic performance, based on discrete predictive models. En Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’19) (pp.680-685). Association for Computing Machinery, New York, NY, USA.
Mendoza-Macías, M., & Barcia-Briones, M. (2020). Las relaciones familiares y rendimiento académico en estudiantes de educación básica. Dominio de las Ciencias, 6(2), 378-394. http://dx.doi.org/10.23857/dc.v6i3.1223
Merchan Rubiano, S. M., & Duarte Garcia, J. A. (2016). Analysis of Data Mining Techniques for Constructing a Predictive Model for Academic Performance. IEEE Latin America Transactions, 14(6), 2783–2788. https://doi.org/10.1109/TLA.2016.7555255
Mishra, T., Kumar, D., & Gupta, S. (2014). Mining Students’ Data for Prediction Performance. 2014 Fourth International Conference on Advanced Computing y Communication Technologies (pp.255-263).
Moreno-Marcos, P. M., Pong, T.C., Munoz-Merino, P. J., & Delgado Kloos, C. (2020). Analysis of the Factors Influencing Learners’ Performance Prediction With Learning Analytics. IEEE Access, 8, 5264–5282. https://doi.org/10.1109/ACCESS.2019.2963503
Musso, M., Kyndt, E., Cascallar, E., & Dochy, F (2013). Predicting general academic performance and identifying the differential contribution of participating variables using artificial neural networks. Frontline Learn. Res, 1, 42–71. https://doi.org/10.14786/flr.v1i1.13
Na, K. S., & Tasir, Z. (2017). Identifying at-risk students in online learning by analysing learning behaviour: A systematic review. En 2017 IEEE Conference on Big Data and Analytics (ICBDA) (pp.118-123).
Palominos, F., Díaz, H, Palominos, S., & Cañete, L. (2018). Relación entre los Procedimientos de Selección a la Educación Superior y el Desempeño Académico de los Estudiantes con base en una Clasificación mediante Conjuntos Difusos. Formación universitaria, 11(1), 45-52. https://dx.doi.org/10.4067/S0718-50062018000100045
Pandey, M., & Taruna, S. (2016). Towards the integration of multiple classifier pertaining to the Student’s performance prediction. Perspectives in Science, 8, 364–366. https://doi.org/10.1016/j.pisc.2016.04.076
Pardo, A., Mirriahi, N., Martinez-Maldonado, R., Jovanovic, J., Dawson, S., & Gašević, D. (2016). Generating actionable predictive models of academic performance. En Sixth International Conference on Learning Analytics y Knowledge - LAK ’16 (pp.474-478). Edinburgh United Kingdom.
Popescu, E., & Leon, F. (2018). Predicting Academic Performance Based on Learner Traces in a Social Learning Environment. IEEE Access, 6, 72774-72785 https://doi.org/10.1109/ACCESS.2018.2882297
Quinn, R., & Gray, G. (2020). Prediction of student academic performance using Moodle data from a Further Education setting. Irish Journal of Technology Enhanced Learning, 5(1). https://doi.org/10.22554/ijtel.v5i1.57
Rahul, R., & Katarya, R. (2019). A Review: Predicting the Performance of Students Using Machine learning Classification Techniques. 2019 Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)(pp.36-41). Palladam, India, India.
Ranjeeth, S., Latchoumi, T. P., & Paul, P. V. (2020). A Survey on Predictive Models of Learning Analytics. Procedia Computer Science, 167, 37–46. https://doi.org/10.1016/j.procs.2020.03.180
Rastrollo-Guerrero, J.L., Gómez-Pulido, J.A., & Durán-Domínguez, A. (2020). Analyzing and Predicting Students’ Performance by Means of Machine Learning: A Review. Applied Sciences, 10(3), 1042. https://doi.org/10.3390/app10031042
Rienties, B., Herodotou, C., Olney, T., Schencks, M., & Boroowa, A. (2018). Making sense of learning analytics dashboards: A technology acceptance perspective of 95 teachers. The International Review of Research in Open and Distributed Learning, 19 (5) https://doi.org/10.19173/irrodl.v19i5.3493 .
Romero, C., Márquez V., & Ventura, S. (2012). Predicción del Fracaso Escolar Mediante Técnicas de Minería de Datos. Iee-Rita, 7(3), 109–117.
Salam, S. D., Paul, P., Tabassum, R., Mahmud, I., Ullah, M. A., Rahman, A., & Rahman, R. M. (2018). Determination of Academic Performance and Academic Consistency by Fuzzy Logic. 2018 International Conference on Intelligent Systems (IS). Funchal - Madeira, Portugal, Portugal.
Shahiri, A. M., Husain, W., & Rashid, N. A. (2015). A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science, 72, 414–422. https://doi.org/10.1016/j.procs.2015.12.157
Shanthini, A., Vinodhin, G., & Chandrasekaran, R. M. (2018). Predicting Students’ Academic Performance in the University Using Meta Decision Tree Classifiers. Journal of Computer Science, 14(5), 654–662. https://doi.org/10.3844/jcssp.2018.654.662
Shingari, I., Kumar, D., & Khetan, M. (2017). A review of applications of data mining techniques for prediction of students’ performance in higher education. Journal of Statistics and Management Systems, 20(4), 713–722. https://doi.org/10.1080/09720510.2017.1395191
Son, L. H., & Fujita, H. (2018). Neural-fuzzy with representative sets for prediction of student performance. Applied Intelligence, 49, 172–187, https://doi.org/10.1007/s10489-018-1262-7
Stake, R. E. (2005). Investigación con estudio de casos. Madrid, Morata.
Tanabe, Y., Kagari, K., Kitanaka, Y., Takeuchi, K., & Hirokawa, S. (2017). Finding Key Integer Values in Many Features for Learners’ Academic Performance Prediction. En 2017 9th International Conference on Education Technology and Computers-ICETC 2017 (pp.167-171), Barcelona Spain.
Taylan, O., & Karagözoğlu, B. (2009). An adaptive neuro-fuzzy model for prediction of student’s academic performance. Computers y Industrial Engineering, 57(3), 732–741. https://doi.org/10.1016/j.cie.2009.01.019
Tempelaar, D. T., Rienties, B., & Giesbers, B. (2015). In search for the most informative data for feedback generation: Learning analytics in a data-rich context. Computers in Human Behavior, 47, 157–167. https://doi.org/10.1016/j.chb.2014.05.038 .
Torres, P.V., González, C.S., Aciar, S.V., & Morales, G.R. (2018). Methodology for systematic literature review applied to engineering and education. En 2018 IEEE Global Engineering Education Conference (EDUCON), (pp. 1364-1373). Canary, Island, Spain.
Urrútia, G., & Bonfill, X (2010). PRISMA declaration: A proposal to improve the publication of systematic reviews and meta-analyses. Med. Clín, 135 (11), 507–511, 2010. https://bit.ly/3bZ3X0R
Urteaga, I., Siri, L., & Garófalo, G. (2020). Predicción temprana de deserción mediante aprendizaje automático en cursos profesionales en línea. RIED. Revista Iberoamericana de Educación a Distancia, 23(2), 147-167. https://doi.org/10.5944/ried.23.2.26356
Van Leeuwen, A., Janssen, J., Erkens, G., & Brekelmans, M. (2015). Teacher regulation of cognitive activities during student collaboration: Effects of learning analytics. Computers y Education, 90, 80–94. https://doi.org/10.1016/j.compedu.2015.09.006
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2018). The current landscape of learning analytics in higher education. Computers in Human Behavior, 89, 98–110. https://doi.org/10.1016/j.chb.2018.07.027
Waheed, H., Hassan, S.U., Aljohani, N. R., Hardman, J., & Nawaz, R. (2020). Predicting Academic Performance of Students from VLE Big Data using Deep Learning Models. Computers in Human Behavior, 106189. https://doi.org/10.1016/j.chb.2019.106189
Yadav, R. S., Soni, A. K., & Pal, S. (2014). A study of academic performance evaluation using Fuzzy Logic techniques. En 2014 International Conference on Computing for Sustainable Global Development (INDIACom) (pp.48-53).
Yao, H., Lian, D., Cao, Y., Wu., & Zhou, T (2019). Predicting Academic Performance for College Students: A Campus Behavior Perspective. ACM Trans. Intell. Syst. Technol. 10(3), 1-21. https://doi.org/10.1145/3299087
Yildiz, O., Bal, A., & Gulsecen, S. (2013). Improved fuzzy modelling to predict the academic performance of distance education students. The International Review of Research in Open and Distributed Learning, 14(5), 143-165 https://doi.org/10.19173/irrodl.v14i5.1595
Zaldumbide, J. P., & Párraga, V. C (2018). Systematic Mapping Study of Literature on Educational Data Mining to determine factors that affect school performance. En 2018 International Conference on Information Systems and Computer Science (INCISCOS) (pp.239-245). Quito, Ecuador
Zambrano, C, Urrutia, A., & Varas, M. (2017). Análisis de rendimiento académico estudiantil usando Data Warehouse Difuso. Ingeniare. Revista chilena de ingeniería, 25(2), 242-254. https://dx.doi.org/10.4067/S0718-33052017000200242
Zuviria, N. M., Mary, S. L., & Kuppammal, V. (2012). SAPM: ANFIS based prediction of student academic performance metric. En 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT’12). Coimbatore, India.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Odiel Estrada Molina, Dieter Fuentes Cancell

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal accept the following conditions:
Authors conserve the copyrights and cede to the journal the right for first publication, with the work registered with the attribution licence of Creative Commons, which allows third parties to use the published work as long as they mention the authorship and the first publication in this journal.
The authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (e.g. include it an institutional repository or publish it in a book) as long as it clearly indicates that the work was first published in this journal.
Authors are allowed and indeed recommended to publish their work on the internet (for example on institutional or personal pages) before and during the revision and publication process, because it can lead to productive exchanges and greater and faster dissemination of the published work (see The Effect of Open Access).
Accepted 2021-05-11
Published 2021-09-15
- Abstract 943
- PDF (Español (España)) 504
- HTML (Español (España)) 170
- ePUB (Español (España)) 75