Diagnostiquer en utilisant la théorie de Van Hiele pour assurer une éducation de qualité
DOI :
https://doi.org/10.12795/CP.2024.i33.v2.05Mots-clés :
Géométrie, égalité des chances, mathématiques, évaluation des connaissances préalables, intervention pédagogiqueRésumé
L'agenda 2030 a ouvert un nouvel horizon dans lequel des objectifs de développement durable ont été fixés pour être atteints. Parmi ces objectifs figure l'ODD 4 « Éducation de qualité », qui met l'accent sur une éducation équitable et de qualité et sur la création de possibilités d'apprentissage tout au long de la vie pour tous les individus. Afin de garantir ces aspects, la première chose à faire est de connaître le niveau de départ de chaque élève, ce qui, dans le domaine de la géométrie, peut être réalisé à l'aide de la théorie de Van Hiele. En outre, il est extrêmement important de connaître la perception qu'ont les élèves de la matière travaillée. Pour toutes ces raisons, 3 tests ont été conçus, en les adaptant, sur la base des recommandations et des suggestions de la littérature, à d'autres qui ont déjà été testés. Les résultats des réponses montrent qu'une intervention est nécessaire dans le groupe considéré. Il est également nécessaire de connaître le niveau initial de connaissances de chaque personne, ainsi que son niveau visuospatial et sa perception de la motivation, de l'utilité et de la confiance en soi par rapport à la géométrie. Sur la base de ces informations, l'intervention peut être planifiée de manière personnalisée, garantissant l'égalité des chances et contribuant à créer des opportunités d'apprentissage à l'avenir.
Téléchargements
Références
Adelabu, F. M., Makgato, M., & Ramaligela, M. S. (2019). The Importance of Dynamic Geometry Computer Software on Learners’ Performance in Geometry. Electronic Journal of E-Learning, 17(1), Article 1.
Ansah, S., Asiedu-Addo, S. K., & Kabutey, D. T. (2022). Investigating the Effect of Using GeoGebra as an Instructional Tool on van Hiele’s Geometric Thinking Levels of Senior High Technical School Students’. International Journal of Mathematics and Statistics Studies, 10(1), 31–39. https://doi.org/10.37745/ijmss.13/vol10no1pp.31-39
Araya, R. G., & Alfaro, E. B. (2010). La enseñanza y aprendizaje de la geometría en secundaria, la perspectiva de los estudiantes. Revista Electrónica Educare, 14(2), Article 2. https://doi.org/10.15359/ree.14-2.9
Armah, R. B., & Kissi, P. S. (2019). Use of the van hiele theory in investigating teaching strategies used by college of education geometry tutors. EURASIA Journal of Mathematics, Science and Technology Education, 15(4), em1694.
Autores (2024). Eliminado para anonimizar.
Beltrán-Pellicer, P., Rodríguez Jaso, C., & Muñoz Escolano, J. M. (2020). Introduciendo BlocksCAD como recurso didáctico en matemáticas. Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas, 93, 39–48.
Briceño, E. V. (2020). Espacios complementarios de aprendizaje en educación superior con el uso de redes sociales en zonas con existencia de brecha digital y de acceso: caso de la provincia de Guanacaste. In Nuevas dimensiones de la educación: gamificación, TIC y e-learning (pp. 275-287). GKA Ediciones-Eagora.
Buckley, J., Seery, N., & Canty, D. (2019). Investigating the use of spatial reasoning strategies in geometric problem solving. International Journal of Technology and Design Education, 29(2), 341–362. https://doi.org/10.1007/s10798-018-9446-3
Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial thinking test. Learning and Individual Differences, 22(6), 868-874. https://doi.org/10.1016/j.lindif.2012.05.007
Crompton, H., & Ferguson, S. (2024). An analysis of the essential understandings in elementary geometry and a comparison to the common core standards with teaching implications. European Journal of Science and Mathematics Education, 12(2), 258–275. https://doi.org/10.30935/scimath/14361
Dockendorff, M., & Solar, H. (2018). ICT integration in mathematics initial teacher training and its impact on visualization: The case of GeoGebra. International Journal of Mathematical Education in Science and Technology, 49(1), 66–84. https://doi.org/10.1080/0020739X.2017.1341060
Fitriyani, H., Widodo, S. A., & Hendroanto, A. (2018). Students’ geometric thinking based on Van Hiele’s theory. Infinity Journal, 7(1), 55–60. https://doi.org/10.22460/infinity.v7i1.p55-60
Komala, K., Manfaat, B., & Haqq, A. A. (2021). Development of Geometry Test Based on Van Hiele’s Theory in Exploration Profile of Student’s Spatial Reasoning Ability Level. Eduma : Mathematics Education Learning and Teaching, 10(1), 83. https://doi.org/10.24235/eduma.v10i1.8518
Lane, D., Lynch, R., & McGarr, O. (2019). Problematizing spatial literacy within the school curriculum. International Journal of Technology and Design Education, 29(4), 685–700. https://doi.org/10.1007/s10798-018-9467-y
Mwadzaangati, L., & Kazima, M. (2019). An Exploration of Teaching for Understanding the Problem for Geometric Proof Development: The Case of Two Secondary School Mathematics Teachers. African Journal of Research in Mathematics, Science and Technology Education, 23(3), 298–308. https://doi.org/10.1080/18117295.2019.1685221
Naufal, M. A., Abdullah, A. H., Osman, S., Abu, M. S., Ihsan, H., & Rondiyah, R. (2021). Reviewing the Van Hiele model and the application of metacognition on geometric thinking. International Journal of Evaluation and Research in Education (IJERE), 10(2), Article 2.
https://doi.org/10.11591/ijere.v10i2.21185
Patkin, D. (2014). Global van Hiele (GVH) Questionnaire as a Tool for Mapping Knowledge and Understanding of Plane and Solid Geometry. Research in Mathematical Education, 18(2), 103-128. https://doi.org/10.7468/JKSMED.2014.18.2.103
Pegg, J. (2014). The van Hiele Theory. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 613–615). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_183
Phipps, R., & Merisotis, J. (1999). What’s the Difference: A Review of Contemporary Research on the Effectiveness of Distance Learning in Higher Education. https://detaresearch.org/whats-the-difference-a-review-of-contemporary-research-on-the-effectiveness-of-distance-learning-in-higher-education/
Pujawan, I. G. N., Suryawan, I. P. P., & Prabawati, D. A. A. (2020). The Effect of Van Hiele Learning Model on Students’ Spatial Abilities. International Journal of Instruction, 13(3), 461–474. https://doi.org/10.29333/iji.2020.13332a
Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. (2022).
Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato. (2022).
Red Española para el Desarrollo Sostenible (2017). Cómo empezar con los ODS en las universidades. https://reds-sdsn.es/wp/wp-content/uploads/2017/02/Guia-ODS-Universidades-1800301-WEB.pdf
Rojas Suárez, C., & Sierra Delgado, T. Á. (2021). Conocimientos geométricos como respuesta a un problema espacial en el desarrollo de un recorrido de estudio e investigación. Educación Matemática, 33(1), 208–239. https://doi.org/10.24844/EM3301.08
Santos-Trigo, M., Aguilar-Magallón, D., & Reyes-Martínez, I. (2019). A mathematical problem-solving approach based on digital technology affordances to represent, explore, and solve problems via geometric reasoning. Problem Solving in Mathematics Instruction and Teacher Professional Development, 145–166.
Suárez, C. R., & Delgado, T. Á. S. (2020). Los problemas espaciales: Una propuesta alternativa para enseñar geometría en la Educación Secundaria Obligatoria
Spatial problems: an alternative proposal to teach geometry in Compulsory Secondary Education. Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática, 22(4), Article 4.
https://doi.org/10.23925/1983-3156.2020v22i4p593-602
Sulistiowati, D. L., Herman, T., & Jupri, A. (2019). Student difficulties in solving geometry problem based on Van Hiele thinking level. Journal of Physics: Conference Series, 1157, 042118.
https://doi.org/10.1088/1742-6596/1157/4/042118
Sunardi, Yudianto, E., Susanto, Kurniati, D., Cahyo, R. D., & Subanji. (2019). Anxiety of Students in Visualization, Analysis, and Informal Deduction Levels to Solve Geometry Problems. International Journal of Learning, Teaching and Educational Research, 18(4), Article 4.
Toma, F., Ardelean, A., Grădinaru, C., Nedelea, A., & Diaconu, D. C. (2023). Effects of ICT Integration in Teaching Using Learning Activities. Sustainability, 15(8), Article 8.
https://doi.org/10.3390/su15086885
UNESCO (2023). (20 de abril de 2023). Lanzamiento del informe sobre datos del Objetivo de Desarrollo Sostenible número 4: herramientas estadísticas y estrategias para países y donantes. UNESCO. Recuperado el día 17 de octubre de 2024. https://www.unesco.org/es/articles/lanzamiento-del-informe-sobre-datos-del-objetivo-de-desarrollo-sostenible-numero-4-herramientas
Usiskin, Z., & Senk, S. (1990). Evaluating a Test of van Hiele Levels: A Response to Crowley and Wilson. Journal for Research in Mathematics Education, 21(3), 242.
https://doi.org/10.2307/749378
Utley, J. (2007). Construction and Validity of Geometry Attitude Scales. School Science and Mathematics, 107(3), 89-93.
https://doi.org/10.1111/j.1949-8594.2007.tb17774.x
Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Press.
Vandenberg, S. G., & Kuse, A. R. (1978). Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization. Perceptual and Motor Skills, 47(2), 599-604. https://doi.org/10.2466/pms.1978.47.2.599
Wijaya, Y. Y., Sunardi, Slamin, Margaretha, P. M., & Wijayanti, N. P. A. A. (2019). Senior high school student’s visual-spatial intelligence according to van hiele geometric thinking theory. IOP Conference Series: Earth and Environmental Science, 243, 012055.
https://doi.org/10.1088/1755-1315/243/1/012055
Yalley, E., Armah, G., & Ansah, R. K. (2021). Effect of the VAN Hiele Instructional Model on Students’ Achievement in Geometry. Education Research International, 2021(1), 6993668.
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
© Cuestiones Pedagógicas. Revista de Ciencias de la Educación 2024

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada.


