Diagnostic assessments using Van Hiele's theory to ensure quality education

Authors

  • Yeray Rodríguez Rincón Universidad Pública de Navarra
  • Á. Alberto Magreñán Ruiz Universidad de La Rioja
  • Lara Orcos Palma Universidad de La Rioja

DOI:

https://doi.org/10.12795/CP.2024.i33.v2.05

Keywords:

Geometry, equal opportunities, mathematics, assessment of prior knowledge, educational intervention

Abstract

The 2030 agenda has opened a new horizon in which sustainable development goals have been set to be achieved. Among these objectives appears the Sustainable Development Goal 4 “Quality Education” which highlights equitable and quality education and the creation of lifelong learning opportunities for all people. In order to guarantee these aspects, the first thing to do is to know the starting level of each student which in geometry area can be done using Van Hiele's theory in order to obtain the level in which they are. In addition, it is extremely important to know the perception of the students regarding the subject being worked on, in this case geometry. For all this, 3 tests have been designed, adapting them from others already tested  following the recommendations and suggestions present in the literature. The results of the responses show how in the considered group an intervention is necessary. In addition, information related to the initial level of knowledge of each of the people who, their visuospatial level and the perception about the motivation, usefulness and confidence they have in themselves regarding geometry. Based on this information, different interventions can be planned in a personalized way, guaranteeing equal opportunities, equity and helping to create learning opportunities in the future for each particular student.

Downloads

Download data is not yet available.

References

Adelabu, F. M., Makgato, M., & Ramaligela, M. S. (2019). The Importance of Dynamic Geometry Computer Software on Learners’ Performance in Geometry. Electronic Journal of E-Learning, 17(1), Article 1.

Ansah, S., Asiedu-Addo, S. K., & Kabutey, D. T. (2022). Investigating the Effect of Using GeoGebra as an Instructional Tool on van Hiele’s Geometric Thinking Levels of Senior High Technical School Students’. International Journal of Mathematics and Statistics Studies, 10(1), 31–39. https://doi.org/10.37745/ijmss.13/vol10no1pp.31-39

Araya, R. G., & Alfaro, E. B. (2010). La enseñanza y aprendizaje de la geometría en secundaria, la perspectiva de los estudiantes. Revista Electrónica Educare, 14(2), Article 2. https://doi.org/10.15359/ree.14-2.9

Armah, R. B., & Kissi, P. S. (2019). Use of the van hiele theory in investigating teaching strategies used by college of education geometry tutors. EURASIA Journal of Mathematics, Science and Technology Education, 15(4), em1694.

Autores (2024). Eliminado para anonimizar.

Beltrán-Pellicer, P., Rodríguez Jaso, C., & Muñoz Escolano, J. M. (2020). Introduciendo BlocksCAD como recurso didáctico en matemáticas. Suma: Revista sobre Enseñanza y Aprendizaje de las Matemáticas, 93, 39–48.

Briceño, E. V. (2020). Espacios complementarios de aprendizaje en educación superior con el uso de redes sociales en zonas con existencia de brecha digital y de acceso: caso de la provincia de Guanacaste. In Nuevas dimensiones de la educación: gamificación, TIC y e-learning (pp. 275-287). GKA Ediciones-Eagora.

Buckley, J., Seery, N., & Canty, D. (2019). Investigating the use of spatial reasoning strategies in geometric problem solving. International Journal of Technology and Design Education, 29(2), 341–362. https://doi.org/10.1007/s10798-018-9446-3

Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial thinking test. Learning and Individual Differences, 22(6), 868-874. https://doi.org/10.1016/j.lindif.2012.05.007

Crompton, H., & Ferguson, S. (2024). An analysis of the essential understandings in elementary geometry and a comparison to the common core standards with teaching implications. European Journal of Science and Mathematics Education, 12(2), 258–275. https://doi.org/10.30935/scimath/14361

Dockendorff, M., & Solar, H. (2018). ICT integration in mathematics initial teacher training and its impact on visualization: The case of GeoGebra. International Journal of Mathematical Education in Science and Technology, 49(1), 66–84. https://doi.org/10.1080/0020739X.2017.1341060

Fitriyani, H., Widodo, S. A., & Hendroanto, A. (2018). Students’ geometric thinking based on Van Hiele’s theory. Infinity Journal, 7(1), 55–60. https://doi.org/10.22460/infinity.v7i1.p55-60

Komala, K., Manfaat, B., & Haqq, A. A. (2021). Development of Geometry Test Based on Van Hiele’s Theory in Exploration Profile of Student’s Spatial Reasoning Ability Level. Eduma : Mathematics Education Learning and Teaching, 10(1), 83. https://doi.org/10.24235/eduma.v10i1.8518

Lane, D., Lynch, R., & McGarr, O. (2019). Problematizing spatial literacy within the school curriculum. International Journal of Technology and Design Education, 29(4), 685–700. https://doi.org/10.1007/s10798-018-9467-y

Mwadzaangati, L., & Kazima, M. (2019). An Exploration of Teaching for Understanding the Problem for Geometric Proof Development: The Case of Two Secondary School Mathematics Teachers. African Journal of Research in Mathematics, Science and Technology Education, 23(3), 298–308. https://doi.org/10.1080/18117295.2019.1685221

Naufal, M. A., Abdullah, A. H., Osman, S., Abu, M. S., Ihsan, H., & Rondiyah, R. (2021). Reviewing the Van Hiele model and the application of metacognition on geometric thinking. International Journal of Evaluation and Research in Education (IJERE), 10(2), Article 2.

https://doi.org/10.11591/ijere.v10i2.21185

Patkin, D. (2014). Global van Hiele (GVH) Questionnaire as a Tool for Mapping Knowledge and Understanding of Plane and Solid Geometry. Research in Mathematical Education, 18(2), 103-128. https://doi.org/10.7468/JKSMED.2014.18.2.103

Pegg, J. (2014). The van Hiele Theory. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 613–615). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_183

Phipps, R., & Merisotis, J. (1999). What’s the Difference: A Review of Contemporary Research on the Effectiveness of Distance Learning in Higher Education. https://detaresearch.org/whats-the-difference-a-review-of-contemporary-research-on-the-effectiveness-of-distance-learning-in-higher-education/

Pujawan, I. G. N., Suryawan, I. P. P., & Prabawati, D. A. A. (2020). The Effect of Van Hiele Learning Model on Students’ Spatial Abilities. International Journal of Instruction, 13(3), 461–474. https://doi.org/10.29333/iji.2020.13332a

Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. (2022).

Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato. (2022).

Red Española para el Desarrollo Sostenible (2017). Cómo empezar con los ODS en las universidades. https://reds-sdsn.es/wp/wp-content/uploads/2017/02/Guia-ODS-Universidades-1800301-WEB.pdf

Rojas Suárez, C., & Sierra Delgado, T. Á. (2021). Conocimientos geométricos como respuesta a un problema espacial en el desarrollo de un recorrido de estudio e investigación. Educación Matemática, 33(1), 208–239. https://doi.org/10.24844/EM3301.08

Santos-Trigo, M., Aguilar-Magallón, D., & Reyes-Martínez, I. (2019). A mathematical problem-solving approach based on digital technology affordances to represent, explore, and solve problems via geometric reasoning. Problem Solving in Mathematics Instruction and Teacher Professional Development, 145–166.

Suárez, C. R., & Delgado, T. Á. S. (2020). Los problemas espaciales: Una propuesta alternativa para enseñar geometría en la Educación Secundaria Obligatoria
Spatial problems: an alternative proposal to teach geometry in Compulsory Secondary Education. Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática, 22(4), Article 4.

https://doi.org/10.23925/1983-3156.2020v22i4p593-602

Sulistiowati, D. L., Herman, T., & Jupri, A. (2019). Student difficulties in solving geometry problem based on Van Hiele thinking level. Journal of Physics: Conference Series, 1157, 042118.

https://doi.org/10.1088/1742-6596/1157/4/042118

Sunardi, Yudianto, E., Susanto, Kurniati, D., Cahyo, R. D., & Subanji. (2019). Anxiety of Students in Visualization, Analysis, and Informal Deduction Levels to Solve Geometry Problems. International Journal of Learning, Teaching and Educational Research, 18(4), Article 4.

Toma, F., Ardelean, A., Grădinaru, C., Nedelea, A., & Diaconu, D. C. (2023). Effects of ICT Integration in Teaching Using Learning Activities. Sustainability, 15(8), Article 8.

https://doi.org/10.3390/su15086885

UNESCO (2023). (20 de abril de 2023). Lanzamiento del informe sobre datos del Objetivo de Desarrollo Sostenible número 4: herramientas estadísticas y estrategias para países y donantes. UNESCO. Recuperado el día 17 de octubre de 2024. https://www.unesco.org/es/articles/lanzamiento-del-informe-sobre-datos-del-objetivo-de-desarrollo-sostenible-numero-4-herramientas

Usiskin, Z., & Senk, S. (1990). Evaluating a Test of van Hiele Levels: A Response to Crowley and Wilson. Journal for Research in Mathematics Education, 21(3), 242.

https://doi.org/10.2307/749378

Utley, J. (2007). Construction and Validity of Geometry Attitude Scales. School Science and Mathematics, 107(3), 89-93.

https://doi.org/10.1111/j.1949-8594.2007.tb17774.x

Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Press.

Vandenberg, S. G., & Kuse, A. R. (1978). Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization. Perceptual and Motor Skills, 47(2), 599-604. https://doi.org/10.2466/pms.1978.47.2.599

Wijaya, Y. Y., Sunardi, Slamin, Margaretha, P. M., & Wijayanti, N. P. A. A. (2019). Senior high school student’s visual-spatial intelligence according to van hiele geometric thinking theory. IOP Conference Series: Earth and Environmental Science, 243, 012055.

https://doi.org/10.1088/1755-1315/243/1/012055

Yalley, E., Armah, G., & Ansah, R. K. (2021). Effect of the VAN Hiele Instructional Model on Students’ Achievement in Geometry. Education Research International, 2021(1), 6993668.

https://doi.org/10.1155/2021/6993668

Published

2024-12-31

How to Cite

Rodríguez Rincón, Y., Magreñán Ruiz, Á. A., & Orcos Palma, L. (2024). Diagnostic assessments using Van Hiele’s theory to ensure quality education. Cuestiones Pedagógicas. Revista De Ciencias De La Educación, 2(33), 93–114. https://doi.org/10.12795/CP.2024.i33.v2.05