Robótica e Inteligencia artificial en el desarrollo de la Alta Capacidad

Autores/as

DOI:

https://doi.org/10.12795/anduli.2025.i27.06

Palabras clave:

alta capacidad, superdotación, talento, inteligencia artificial, robótica, pensamiento computacional, tecnología, desarrollo, educación, intervención

Resumen

Los estudiantes con alta capacidad (AC) podrían contribuir de una manera relevante en una sociedad dinámica que requiere de profesionales automotivados para realizar aprendizajes permanentes y producciones innovadoras. Sin embargo, existe una discrepancia entre el logro esperado basado en sus potenciales intelectuales y el rendimiento académico y profesional. Esta revisión bibliográfica analiza los beneficios de la integración de la robótica y la inteligencia artificial (IA) en la educación de los estudiantes con AC sobre las competencias más demandadas por el mercado laboral. Se revisan 24 estudios, siguiendo los criterios PRISMA. Los estudios muestran que la integración de la robótica y la IA en la educación de los estudiantes con AC favorece el aprendizaje profundo, la exploración creativa y la resolución de problemas reales con relevancia socioemocional, por lo que su integración en las prácticas educativas no sólo puede promover profesionales que sean tecnológicamente expertos, sino también emocionalmente inteligentes y socialmente competentes para enfrentarse a las complejidades y las necesidades de una sociedad en continuo cambio.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Biografía del autor/a

María-Isabel Gómez-León, Universidad Internacional de La Rioja

Doctora en Neurociencia por la Universidad Complutense de Madrid (UCM). Ha participado en proyectos de investigación con la UCM y la Universidad Politécnica de Madrid. Autora de 40 publicaciones en reconocidas revistas científicas y editoriales SPI. Actualmente, es profesora de grado y posgrado en la Universidad Internacional de La Rioja (UNIR), Camilo José Cela y Antonio de Nebrija; directora y profesora de posgrado en el Máster de Atención Temprana en la Universidad Francisco de Vitoria; y gerente de un centro de neuropsicología infantil especializado en atención temprana.

Citas

Abu Owda, M. F., Abu Mousa, A. H., Shakfa, M. D., & Al-Hidabi, D. A. (2023). The Impact of Teaching Artificial Intelligence Concepts and Tools in Improving Creative Thinking Skills Among Talented Students. In Technological Sustainability and Business Competitive Advantage (pp. 267-279). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-35525-7_16

Al Hamad, N. M., Adewusi, O. E., Unachukwu, C. C., Osawaru, B., & Chisom, O. N. (2024). Bridging the gap: Using robotics to enhance emotional and social learning in K-12 education. International Journal of Science and Research Archive, 11(1), 231-243. https://doi.org/10.30574/ijsra.2024.11.1.0025

Anderson, B. N. (2020). “See Me, See Us”: Understanding the Intersections and Continued Marginalization of Adolescent Gifted Black Girls in U.S. Classrooms. Gifted Child Today, 43(2), 86–100. https://doi.org/10.1177/1076217519898216

Anomal, R. F., Brandão, D. S., Porto, S. B., de Oliveira, S. S., de Souza, R. F. L., Fiel, J. D. S., ... & Pereira Jr, A. (2020). The role of frontal and parietal cortex in the performance of gifted and average adolescents in a mental rotation task. PLoS One, 15(5), e0232660. https://doi.org/10.1371/journal.pone.0232660

Avcu, Y. E., & Er, K. O. (2020). Developing an Instructional Design for the Field of ICT and Software for Gifted and Talented Students. International Journal of Educational Methodology, 6(1), 161-183. https://doi.org/10.12973/ijem.6.1.161

Ayoub, A. E. A., Abdulla Alabbasi, A. M., Alsubaie, A. M., Runco, M. A., & Acar, S. (2022). Enhanced open-mindedness and problem finding among gifted female students involved in future robotics design. Roeper Review: A Journal on Gifted Education, 44(2), 85–93. https://doi.org/10.1080/02783193.2022.2043500

Babaoglu, G., & Güven Yildirim, E. (2023). The Effect on Gifted Students' 21st Century Skills of Supporting Science Teaching with LEGO® Education® BricQ Motion Essential and Student Opinions on This Instruction. Science Insights Education Frontiers, 15(2), 2305-2324. https://doi.org/10.15354/sief.23.or216.

Ball, T., Finney, J., Hodges, S., Rubegni, E., Underwood, L., Everson, J., ... & Vishkaie, R. (2024, June). Imagining Inclusive Digital Maker Futures with the BBC micro: bit. In Proceedings of the 23rd Annual ACM Interaction Design and Children Conference (pp. 1032-1034). https://doi.org/10.1145/3628516.3661156

Castillejos López, B. (2022). Inteligencia artificial y entornos personales de aprendizaje: atentos al uso adecuado de los recursos tecnológicos de los estudiantes universitarios. Educación, 31(60), 9-24. https://dx.doi.org/10.18800/educacion.202201.001

Choi, K., & Lee, S. (2015). The Influence of Students’ Perception of Tutor’s roles on Deep Learning, Achievement, and Course Evaluation in Online Gifted Education Program. Journal of Gifted/Talented Education. The Korean Society for the Gifted. ,25(6), 857-879. https://doi.org/10.9722/jgte.2015.25.6.857

Choi, Y., & Hong, S. H. (2015). Effects of STEAM lessons using scratch programming regarding small organisms in elementary science-gifted education. Journal of Korean Elementary Science Education, 34(2), 194-209. https://doi.org/10.15267/keses.2015.34.2.194

Coxon, S. V. (2012). The malleability of spatial ability under treatment of a FIRST LEGO league-based robotics simulation. Journal for the Education of the Gifted, 35(3), 291-316.https://doi.org/10.1177/0162353212451788.

Coxon, S. V., Dohrman, R. L., & Nadler, D. R. (2018). Children using robotics for engineering, science, technology, and math: The development and evaluation of an engaging math curriculum. Roeper Review, 40(2), 86–96. https://doi.org/10.1080/02783193.2018.1434711

Cross, J. L. (2017) Creative Robotic Systems for Talent-Based Learning (Doctoral dissertation, Carnegie Mellon University). Curby, T. W., Rudasill, K. M., Rimm-Kaufman, S. E., & Konold,T. R. (2008). The role of social competence in predicting gifted enrollment. Psychology in the Schools, 45(8), 729-744. https://doi.org/10.1002/pits.20338

Dai, D. Y. (2020). Rethinking Human Potential from a Talent Development Perspective. Journal for the Education of the Gifted, 43(1), 19-37. https://doi.org/10.1177/0162353219897850

Demszky, D., Liu, J., Hill, H. C., Sanghi, S., & Chung, A. (2023). Improving Teachers’ Questio¬ning Quality through Automated Feedback: A Mixed-Methods Randomized Contro¬lled Trial in Brick-and-Mortar Classrooms. EdWorkingPaper, 23-875. https://doi.org/10.26300/8pnw-5q67

dos Reis Taucei, J., Stoltz, T., & Gabardo, C. V. (2015). Creativity and education: interactive teaching practices with a gifted student. Creative Education, 6(21), 2263. https://doi.org/10.4236/ce.2015.621234

Fabio, R. A., Croce, A., & Calabrese, C. (2022). Critical Thinking in Ethical and Neutral Settings in Gifted Children and Non-Gifted Children. Children (Basel, Switzerland), 10(1), 74. https://doi.org/10.3390/children10010074

García-Perales, R., & Almeida, L. (2019). An enrichment program for students with high intellectual ability: Positive effects on school adaptation. [Programa de enriquecimiento para alumnado con alta capacidad: Efectos positivos para el currículum]. Comunicar, 60, 39-48. https://doi.org/10.3916/C60-2019-04

Gómez-León, M. I. (2020d). La soledad en la alta capacidad intelectual: Factores de riesgo y estrategias de afrontamiento. Revista de Psicoterapia, 31(117), 297-311. https://doi.org/10.33898/rdp.v31i117.364

Gómez-León, M. I. (2022a). Alta capacidad intelectual desde la neuroimagen y la pedagogía diferencial. ¿Hablamos de lo mismo? Revista Española de Pedagogía, 80 (283), 451-473. https://doi.org/10.22550/REP80-3-2022-02

Gómez-León, M. I. (2022b). Desarrollo de la empatía a través de la Inteligencia Artificial Socioemocional. Papeles del Psicólogo, 43(3), 218-224. https://doi.org/10.23923/pap.psicol.2996

Gómez-León, M. I. (2024). ¿Tramposo e injusto? Entonces, es humano. Robots sociales educativos y ética sintética. Revista Tecnología, Ciencia Y Educación, (27), 167–186. https://doi.org/10.51302/tce.2024.18841

Gómez-León, M.I (2020a). Desarrollo de la alta capacidad durante la infancia temprana. Papeles del Psicólogo. 41(2),147-158 https://doi.org/10.23923/pap.psicol2020.2930

Gómez-León, M.I (2020b). Bases psicobiológicas de la creatividad en los niños con altas capacidades. Psiquiatría biológica. 27(1), 28-33. https://doi.org/10.1016/j.psiq.2020.01.004

Gómez-León, M.I (2020c). La psicobiología de la motivación en el desarrollo de las altas capacidades intelectuales. Revisión bibliográfica. Psiquiatría biológica. 27(2), 47-53. https://doi.org/10.1016/j.psiq.2020.01.003

Gotlieb, R., Hyde, E., Immordino‐Yang, M. H., & Kaufman, S. B. (2016). Cultivating the social–emotional imagination in gifted education: insights from educational neuroscience. Annals of the New York Academy of Sciences, 1377(1), 22-31. https://doi.org/10.1111/nyas.13165

Guthrie, K. H. (2019). “Nothing is ever easy”: Parent Perceptions of Intensity in Their Gifted Adolescent Children. The Qualitative Report, 24(8), 2080-2101. https://nsuworks.nova.edu/tqr/vol24/iss8/16

Guy, C. J., Williams, J. y Shore, B. (2019). High- and Otherwise-Achieving Students’ Expectations of Classroom Group Work: An Exploratory Empirical Study. Roeper Review, 41(3), 166-184. https://doi.org/10.1080/ 02783193.2019.1622166

Jagust, T., Cvetkovic-Lay, J., Krzic, A. S., & Sersic, D. (2018). Using robotics to foster creativity in early gifted education. In Robotics in Education: Latest Results and Developments (pp. 126-131). Springer International Publishing. https://doi.org/10.1007/978-3-319-62875-2_11

Jamali, U. A. Y. (2019). Fostering creativity using robotics among gifted primary school students. Gifted and Talented International, 34(1-2), 71-78. https://doi.org/10.1080/15332276.2020.1711545

Kandlhofer, M., Steinbauer, G., Menzinger, M., Halatschek, R., Kemény, F., & Landerl, K. (2019, October). MINT-Robo: Empowering gifted high school students with robotics. In 2019 IEEE Frontiers in Education Conference (FIE) (pp. 1-5). IEEE. https://doi.org/10.1109/FIE43999.2019.9028478

Kılınç, A., Şenol, A.K., Eraslan, M., & Büyük, U. (2013). Robotik destekli fen öğretimi: BİLSEM örneği [Robotic Assisted Science Teaching: The Case of SAC]. In International Symposium on Changes and New Trends in Education. (p. 65).

Kim, Y., Kim, T., & Kim, J. (2015). Development and application of programming education program of robot for improvement of elementary school girls' creativity. Journal of the Korean Association of information Education, 19(1), 31-44. https://doi.org/10.14352/jkaie.2015.19.1.31

Kocaman, B. (2023). The effect of coding education on analytical thinking of gifted students. International Journal of Educational Methodology, 9(1), 95-106. https://doi.org/10.12973/ijem.9.1.95

Kochmar, E., Vu, D. D., Belfer, R., Gupta, V., Serban, I. V., & Pineau, J. (2022). Automated data-dri¬ven generation of personalized pedagogical interventions in intelligent tutoring systems. International Journal of Artificial Intelligence in Education, 32(2), 323-349. https://doi.org/10.1007/s40593-021-00267-x

Lee, V. R., Pope, D., Miles, S., & Zárate, R. C. (2024). Cheating in the age of generative AI: A high school survey study of cheating behaviors before and after the release of ChatGPT. Computers and Education: Artificial Intelligence, 7, 100253. https://doi.org/10.1016/j.caeai.2024.100253

Lim, S. A., Jung, J. Y., & Kalyuga, S. (2023). Effectiveness of invention tasks and explicit instruction in preparing intellectually gifted adolescents for learning. Instructional Science, 51(6), 921-952.https://doi.org/10.1007/s11251-023-09616-w

OECD (2019), Estrategia de Competencias de la OCDE 2019: Competencias para construir un futuro mejor, OECD Publishing, Paris/Fundación Santillana, Madrid, https://doi.org/10.1787/e3527cfb-es.

OCDE., & Instituto Nacional de Evaluación Educativa (España). (2023). Panorama de la educación. Indicadores de la OCDE 2023. Informe español. Ministerio de Educación y Formación Profesional.

Ramli, R., Yunus, M. M., & Ishak, N. M. (2011). Robotic teaching for Malaysian gifted enrichment program. Procedia: Social and Behavioral Science, 15, 2528–2532. https://doi.org/10.1016/j.sbspro.2011.04.139

Ramos, A., Lavrijsen, J., Linnenbrink-Garcia, L., Soenens, B., Vansteenkiste, M., Sypré, S., ... & Verschueren, K. (2023). * Motivational Pathways Underlying Gifted Underachievement: Trajectory Classes, Longitudinal Outcomes, and Predicting Factors. Gifted Child Quarterly, 67(3), 179-197. https://doi.org/10.1177/00169862221132279

Renzulli, J. S. (2020). The catch-a-wave theory of adaptability: Core competencies for developing gifted behaviors in the second machine age of technology. International Journal for Talent Development and Creativity, 8(1), 79-95. https://doi.org/10.7202/1076749ar

Renzulli, JS (2021). El papel del profesor en el desarrollo de habilidades cognitivas complejas en personas jóvenes. Revista Española de Pedagogía, 79 (278), 13-32. https: // doi. org / 10.22550 / REP79-1-2021-01

Robinson, A., Dailey, D., Hughes, G., & Cotabish, A. (2014). The Effects of a Science-Focused STEM Intervention on Gifted Elementary Students’ Science Knowledge and Skills. Journal of Advanced Academics, 25(3), 189-213. https://doi.org/10.1177/1932202X14533799

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in human behavior, 72, 678-691. https://doi.org/10.1016/j.chb.2016.08.047

Russell, S. (2019). It's not too soon to be wary of AI: We need to act now to protect humanity from future superintelligent machines. IEEE Spectrum, 56(10), 46-51. https://doi.org/10.1109/MSPEC.2019.8847590

Sarıca, H. Ç., Yavuz, G. Ö., & Usluel, Y. K. (2024). Gifted students 'emotions and teacher interactions in robotics lessons: a digital storytelling workshop. In EDULEARN24 Proceedings (pp. 4334-4340). IATED. https://doi.org/10.21125/edulearn.2024.1083

Schüttler, T., & Hausamann, D. (2020). Providing Creative Environments for Young STEM Talents’ Research Projects. US-China Education Review, 10(6), 260-272. https://doi.org/10.17265/2161-623X/2020.06.002

Şen, C., & Ay, Z. (2022). Gifted and Talented Students’ Views on Engineering Design-Oriented Integrated STEM. Bartın University Journal of Faculty of Education, 11(2), 364-383. https://doi.org/10.14686/buefad.1020619

Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931. https://doi.org/10.1016/j.tsc.2021.100931

Senne, J., & Coxon, S. V. (2015). Architecture. Gifted Child Today, 39(1), 31–39. https://doi.org/10.1177/1076217515613385

Seo, Y. M., & Lee, Y. J. (2010). A subject integration robot programming instruction model to enhance the creativity of information gifted students. The Journal of Korean association of computer education, 13(1), 19-26.

Shmatko, N., & Volkova, G. (2020). Bridging the skill gap in robotics: Global and national environment. Sage Open, 10(3), https://doi.org/10.1177/2158244020958736

Siegle, D. (2020). There’s an App for That, and I Made It. Gifted Child Today, 43(1), 64-71. https://doi.org/10.1177/1076217519880587

Siegle, D. (2023). A role for ChatGPT and AI in gifted education. Gifted Child Today, 46(3), 211-219. https://doi.org/10.1177/10762175231168443

Steenbergen-Hu, S., Olszewski-Kubilius, P., & Calvert, E. (2020). The effectiveness of current interventions to reverse the underachievement of gifted students: Findings of a meta-analysis and systematic review. Gifted Child Quarterly, 64(2), 132–165. https://doi.org/10.1177/0016986220908601

Sternberg, R. J. (2024). Do Not Worry That Generative AI May Compromise Human Creativity or Intelligence in the Future: It Already Has. Journal of Intelligence, 12(7), 69. https://doi.org/10.3390/jintelligence12070069

Tosunoğlu, E., & Yildiz Durak, H. (2022). Design, development, and implementation of a simulation application for gifted students in robotics teaching. Computer Applications in Engineering Education, 30(6), 1813-1832. https://doi.org/10.1002/cae.22558

Tran, S., Tirado, J., Miyasato, H., & Lee, S. W. (2024). Students' perceptions of social issues in biology courses. Journal of microbiology & biology education, 25(1), e0019423. https://doi.org/10.1128/jmbe.00194-23

UNESCO. (2021). Recuperar la educación en 2021: La educación en un mundo post-COVID-19. https://en.unesco.org/news/recovering-education-2021-education-post-covid-19-world

Wang, H. Y., Huang, I., & Hwang, G. J. (2014, August). Effects of an integrated Scratch and project-based learning approach on the learning achievements of gifted students in computer courses. In 2014 IIAI 3rd International Conference on Advanced Applied Informatics (pp. 382-387). IEEE. https://doi.org/10.1109/IIAI-AAI.2014.85

Yavuz, G. Ö., & Usluel, Y. K. (2024). Innovative practices in robotics education: awareness of emotion and social emotional skills development in gifted students. In EDULEARN24 Proceedings (pp. 4300-4305). IATED. https://doi.org/10.21125/edulearn.2024.1078

Zbainos, D., & Beloyianni, V. (2018). Creative ideation and motivated strategies for learning of academically talented students in Greek secondary school. Gifted and Talented International, 33(1-2), 3-14. http://dx.doi.org/10.1080/15332276.2018.1547620

Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., ... & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021(1), 8812542. https://doi.org/10.1155/2021/8812542

Descargas

Publicado

2025-01-14

Cómo citar

Gómez-León, M.-I. (2025). Robótica e Inteligencia artificial en el desarrollo de la Alta Capacidad . ANDULI, Revista Andaluza De Ciencias Sociales, (27), 133–151. https://doi.org/10.12795/anduli.2025.i27.06
Visualizaciones
  • Resumen 121
  • PDF 39
  • HTML 4