Creativity, metacognition, and self-efficacy in error detection in worked-out problem examples

Authors

DOI:

https://doi.org/10.12795/revistafuentes.2023.23050

Keywords:

problem solving, creativity, motivation, secondary school students, cognition

Abstract

The use of word problem worked-out examples is a common practice in secondary school science classrooms. Given the paucity of studies on ability to detect errors in worked-out science problem examples, the goals of this research focused on this ability and the effects of scientific creativity, metacognitive skills, science learning self-efficacy, grade level, and gender on it. A quantitative ex post facto cross-sectional research was conducted. A total of 139 students (74 girls and 65 boys) from three different grades of Spanish secondary education (9th, 10th, and 11th grades, between 14 and 17 years old) participated. An error detection task in two worked-out problem exemples with embedded errors, a questionnaire on metacognitive skills and science learning self-efficacy, and a questionnaire on scientific creativity, were administered to participants. Correlation, multiple regression, and mediation analyses suggest that: a) error detection ability was low overall; b) the variables that most influenced error detection in worked-out problem examples were grade level, science learning self-efficacy, and scientific creativity; and c) self-efficacy played the role of mediator between metacognitive skills and error detection, which showed the indirect effect of metacognitive skills on error detection in worked-out problem examples.

Downloads

Download data is not yet available.

Author Biography

Vicente Sanjosé López, Universitat de València (España)

 

 

References

Alabau, J., Solaz-Portolés, J. J., & Sanjosé, V. (2020) Relación entre creencias sobre resolución de problemas, creencias epistemológicas, nivel académico, sexo y desempeño en resolución de problemas: un estudio en educación secundaria. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 17(1), 1102. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2020.v17.i1.1102

Baliram, N., & Ellis, A. K. (2019). The impact of metacognitive practice and teacher feedback on academic achievement in mathematics. School Science and Mathematics, 119(2), 94-104. https://doi.org/10.1111/ssm.12317

Baron, R. M., y Kenny, D. A. (1986). The moderator-mediator variable distinction in social

psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173

Bi, H., Mi, S., Lu, S., & Hu, X. (2020). Meta-analysis of interventions and their effectiveness in students’ scientific creativity. Thinking Skills and Creativity, 38, 100750. https://doi.org/10.1016/j.tsc.2020.100750

Casakin, H., Davidovitch, N., & Milgram, R. M. (2010). Creative thinking as a predictor of creative problem solving in architectural design students. Psychology of Aesthetics, Creativity, and the Arts, 4(1), 31. https://doi.org/10.1037/a0016965

Chamberlin, S. A., & Moon, S. M. (2005). Model eliciting activities as a tool to develop and identify creatively gifted mathematicians. The Journal of Secondary Gifted Education, 17(1), 37–47. https://doi.org/10.4219/jsge-2005-393

Chen, B., Hu, W., y Plucker, J. A. (2014). The Effect of Mood on Problem Finding in Scientific Creativity. The Journal of Creative Behavior, 50(4), 308-320. https://doi.org/10.1002/jocb.79

Chen, X., Mitrovic, A., & Mathews, M. (2019). Learning from worked examples, erroneous examples, and problem solving: Toward adaptive selection of learning activities. IEEE Transactions on Learning Technologies, 13(1), 135-149. https://doi.org/10.1109/TLT.2019.2896080

Cottini, M., Basso, D., Pieri, A., & Palladino, P. (2021). Metacognitive Monitoring and Control in Children’s Prospective Memory. Journal of Cognition and Development, 22(4), 619-639. https://doi.org/10.1080/15248372.2021.1916500

Dane, E., Baer, M., Pratt, M. G., & Oldham, G. R. (2011). Rational versus intuitive problem solving: How thinking “off the beaten path” can stimulate creativity. Psychology of Aesthetics, Creativity, and the Arts, 5(1), 3. https://doi.org/10.1037/a0017698

Fauzi, A., & Saâ, W. (2019). Students’ Metacognitive Skills from the Viewpoint of Answering Biological Questions: Is It Already Good? Jurnal Pendidikan IPA Indonesia, 8(3), 317-327. https://doi.org/10.15294/jpii.v8i3.19457

García, P., Sanjosé, V., & Solaz-Portolés, J. J. (2015). Efectos de las características del problema, captación de su estructura y uso de analogías sobre el éxito de los estudiantes de secundaria en la resolución de problemas. Teoría de la Educación, 27(2), 221-244. http://dx.doi.org/10.14201/teoredu2015272221244

Gómez, C. B., Sanjosé, V., & Solaz-Portolés, J. J. (2012). Una revisión de los procesos de transferencia para el aprendizaje y enseñanza de las ciencias. Didáctica de las ciencias experimentales y sociales, 26(1), 199-227. https://doi.org/10.7203/DCES.26.1934

Guo, L. (2022). The effects of self-monitoring on strategy use and academic performance: A meta-analysis. International Journal of Educational Research, 112, 101939. https://doi.org/10.1016/j.ijer.2022.101939

Hayes, A. F. (2013). Introduction to mediation, moderation and conditional process analysis. A regression based approach. The Guilford Press.

Hong, E., & Milgram, R. M. (2010). Creative thinking ability: Domain generality and specificity. Creativity Research Journal, 22(3), 272-287. https://doi.org/10.1080/10400419.2010.503535

Hu, W., Shi, Q. Z., Han, Q., Wang, X., & Adey, P. (2010). Creative scientific problem finding and its developmental trend. Creativity Research Journal, 22(1), 46–52. https://doi.org/10.1080/10400410903579551

Hu, W., Wu, B., Jia, X., Yi, X., Duan, C., Meyer, W., & Kaufman, J. C. (2013). Increasing students' scientific creativity: The “learn to think” intervention program. The Journal of Creative Behavior, 47(1), 3-21. https://doi.org/10.1002/jocb.20

Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321(5888), 494-495. http://dx.doi.org/10.1126/science.1160364

Kind, M. & Kind, V. (2007) Creativity in Science Education: Perspectives and Challenges for Developing School Science. Studies in Science Education, 43(1), 1-37. https://doi.org/10.1080/03057260708560225

Lindberg, S. M., Hyde, J. S., Petersen, J. L., & Linn, M. C. (2010). New trends in gender and mathematics performance: a meta-analysis. Psychological Bulletin, 136(6), 1123. https://doi.org/10.1037/a0021276

Linnenbrink, E. A., & Pintrich, P. R. (2002). Motivation as an enabler for academic success. School Psychology Review, 31(3), 313-327. https://doi.org/10.1080/02796015.2002.12086158

Lodewyk, K. R. & Winne, P. H. (2005). Relations among the structure of learning tasks, achievement, and changes in self-efficacy in secondary students. Journal of Educational Psychology, 97(1), 3–12. https://doi.org/10.1037/0022-0663.97.1.3

Loibl, K. & Leuders, T. (2019). How to make failure productive: Fostering learning from errors through elaboration prompts. Learning and Instruction, 62, 1-10. https://doi.org/10.1016/j.learninstruc.2019.03.002

Muncer, G., Higham, P.A., Gosling, C.J., Cortese, S., Wood-Downie, H., & Hadwin, J.A. (2022). A meta-analysis investigating the association between metacognition and math performance in adolescence. Educational Psychology Review, 34, 301–334. https://doi.org/10.1007/s10648-021-09620-x

Nietfeld, J. L., Cao, L., & Osborne, J. W. (2005). Metacognitive monitoring accuracy and student performance in the postsecondary classroom. The Journal of Experimental Educational, 74(1), 7-28. https://www.jstor.org/stable/20157410

Otero, J., Campanario, J. M., & Hopkins, K. D. (1992). The relationship between academic achievement and metacognitive comprehension monitoring ability of Spanish secondary school students. Educational and Psychological Measurement, 52(2), 419-430. https://doi.org/10.1177/0013164492052002017

Özcan, Z. Ç., & Gümüş, A. E. (2019). A modeling study to explain mathematical problem-solving performance through metacognition, self-efficacy, motivation, and anxiety. Australian Journal of Education, 63(1), 116-134. https://doi.org/10.1177/0004944119840073

Pajares, F., & Miller, M. D. (1994). Role of self-efficacy and self-concept beliefs in mathematical problem solving: A path analysis. Journal of Educational Psychology, 86(2), 193. https://doi.org/10.1037/0022-0663.86.2.193

Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why isn’t creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist, 39(2), 83–96. https://doi.org/10.1207/s15326985ep3902_1

Renkl, A. (2014). Toward an instructionally oriented theory of example‐based learning. Cognitive Science, 38(1), 1-37. https://doi.org/10.1111/cogs.12086

Renkl, A. (2017). Learning from worked-examples in mathematics: students relate procedures to principles. ZDM, 49(4), 571-584. https://doi.org/10.1007/s11858-017-0859-3

Rozencwajg, P. (2003). Metacognitive factors in scientific problem-solving strategies. European Journal of Psychology of Education, 18(3), 281-294. https://doi.org/10.1007/BF03173249

Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657–687. https://doi.org/10.1146/annurev.psych.55.090902.141502

Sadi, O., & Uyar, M. (2013). The relationship between self-efficacy, self-regulated learning strategies and achievement: A path model. Journal of Baltic Science Education, 12(1), 21. https://doi.org/10.33225/jbse/13.12.21

Sanjosé, V., Fernández, J. J., & Vidal-Abarca, E. (2010). Importancia de las destrezas de procesamiento de la información en la comprensión de textos científicos. Infancia y Aprendizaje, 33(4), 529-541. https://doi.org/10.1174/021037010793139581

Sanjosé, V., Gómez-Ferragud, C. B., Verdugo-Perona, J. J., & Solaz-Portolés, J. J. (2022). Testing a model for the monitoring of worked-out algebra-problem examples: From behaviours to outcomes on a math task. Psicología Educativa, 28(2), 141-149. https://doi.org/10.5093/psed2021a25

Sobel, M. E. (1982). Asymptotic intervals for indirect effects in structural equations models. Sociological Methodology, 13, 290-312. https://doi.org/10.2307/270723

Solaz-Portolés, J. J., Sanjosé, V., & Gómez, C. B. (2011). La investigación sobre la influencia de las estrategias y la motivación en la resolución de problemas: Implicaciones para la enseñanza. Latin-American Journal of Physics Education, 5(4), 788-795. http://www.lajpe.org/dec11/LAJPE_582_Solaz_Portoles_preprint_corr_f.pdf

Thomas, G., Anderson, D., & Nashon, S. (2008). Development of an instrument designed to investigate elements of science students’ metacognition, self-efficacy and learning processes: The SEMLI-S. International Journal of Science Education, 30(13), 1701–1724. https://doi.org/10.1080/09500690701482493

Usher, E. L., & Pajares, F. (2006). Sources of academic and self-regulatory efficacy beliefs of entering middle school students. Contemporary Educational Psychology, 31, 125–141. https://doi.org/10.1016/j.cedpsych.2005.03.002

Van der Stel, M., Veenman, M. V., Deelen, K., & Haenen, J. (2010). The increasing role of metacognitive skills in math: A cross-sectional study from a developmental perspective. ZDM, 42(2),219-229. https://dx.doi.org/10.1007/s11858-009-0224-2

Van Gog, T., Kester, L., & Paas, F. (2011). Effects of worked examples, example-problem, and problem-example pairs on novices’ learning. Contemporary Educational Psychology, 36(3), 212-218. https://doi.org/10.1016/j.cedpsych.2010.10.004

Winograd, P., & Johnston, P. (1982). Comprehension monitoring and the error detection paradigm. Journal of Reading Behavior, 14(1), 61-76. https://doi.org/10.1080/10862968209547435

Woolley, J. S., Deal, A. M., Green, J., Hathenbruck, F., Kurtz, S. A., Park, T. K. H., Pollock, S. V. S., Transtrum, M. B., & Jensen, J. L. (2018). Undergraduate students demonstrate common false scientific reasoning strategies. Thinking Skills and Creativity, 27, 101–113. https://doi.org/10.1016/j.tsc.2017.12.004

Yerdelen-Damar, S., & Peşman, H. (2013). Relations of gender and socioeconomic status to physics through metacognition and self-efficacy. The Journal of Educational Research, 106(4), 280-289. https://doi.org/10.1080/00220671.2012.692729

Zhao, H., & Acosta-Tello, E. (2016). The impact of erroneous examples on students’ learning of equation solving. Journal of Mathematics Education, 9(1), 57-68. https://educationforatoz.com/images/Hong_Zhao_2016.pdf

Zheng, R., McAlack, M., Wilmes, B., Kohler‐Evans, P., & Williamson, J. (2009). Effects of multimedia on cognitive load, self‐efficacy, and multiple rule‐based problem solving. British Journal of Educational Technology, 40(5), 790-803. https://doi.org/10.1111/j.1467-8535.2008.00859.x

Published

2023-09-08

How to Cite

Hijarro-Vercher, A. ., Solaz-Portolés, J. J., & Sanjosé López, V. (2023). Creativity, metacognition, and self-efficacy in error detection in worked-out problem examples . Revista Fuentes, 25(3), 256–266. https://doi.org/10.12795/revistafuentes.2023.23050

Issue

Section

Investigaciones