Validación de una batería socioemocional para aspirantes de educación superior en línea

Autores/as

DOI:

https://doi.org/10.12795/revistafuentes.2026.28828

Palabras clave:

éxito académico, análisis factorial, educación en línea, educación superior, preparación para el aprendizaje, regulación emocional, validación psicométrica, variables socioemocionales

Resumen

Introducción: Este estudio tuvo como objetivo validar una batería socioemocional institucional para aspirantes a licenciatura en línea en México, dada la importancia de estas variables para el éxito académico. Método: Participaron dos muestras: Muestra 1 (N=5272) para el análisis exploratorio y Muestra 2 (N=2227) para el análisis confirmatorio. Inicialmente se administró una batería de autoinformes de 73 ítems. El análisis de datos incluyó la selección de ítems, el análisis gráfico exploratorio y el análisis factorial exploratorio en la Muestra 1, seguidos del análisis factorial confirmatorio en la Muestra 2 para validar la estructura y evaluar la fiabilidad. Resultados: La batería final (30 ítems) arrojó siete dimensiones estables: autoeficacia académica, apoyo familiar, expectativas de crecimiento, expresión emocional, supresión expresiva, desregulación emocional y regulación emocional adaptativa. El ajuste del modelo fue excelente en ambas muestras, con fuertes cargas factoriales, claras correlaciones entre factores y alta confiabilidad. La mayoría de las escalas mostraron distribuciones sesgadas. Discusión: Las dimensiones identificadas coinciden con la literatura sobre el éxito académico en línea. El instrumento reducido y validado mejora la eficacia de la medición y proporciona información temprana sobre los factores socioemocionales. El uso combinado de métodos psicométricos en red y de análisis factorial tradicional refuerza los resultados. Conclusiones: Esta batería es una herramienta válida para evaluar las características socioemocionales en el aprendizaje en línea, permitiendo la identificación temprana de riesgos e informando las estrategias pedagógicas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bandalos, D. L., & Finney, S. J. (2019). Factor analysis. Exploratory and confirmatory. In G. R. Hancock, L. M. Stapleton, & R. O. Mueller (Eds.), The reviewer’s guide to quantitative methods in the social sciences (2nd ed., pp. 98–122). Routledge.

Beaumont, J., Putwain, D. W., Gallard, D., Malone, E., Marsh, H. W., & Pekrun, R. (2023). Students’ emotion regulation and school-related well-being: Longitudinal models juxtaposing between- and within-person perspectives. Journal of Educational Psychology, 115(7), 932–950. https://doi.org/10.1037/edu0000800

Borsboom, D., Cramer, A. O. J., Fried, E. I., Isvoranu, A.-M., Robinaugh, D. J., Dalege, J., & Van Der Maas, H. L. J. (2022). Network perspectives. In A.-M. Isvoranu, S. Epskamp, L. J. Waldorp, & D. Borsboom, Network Psychometrics with R (1st ed., pp. 9–27). Routledge. https://doi.org/10.4324/9781003111238-2

Borup, J., Graham, C. R., West, R. E., Archambault, L., & Spring, K. J. (2020). Academic Communities of Engagement: An expansive lens for examining support structures in blended and online learning. Educational Technology Research and Development, 68(2), 807–832. https://doi.org/10.1007/s11423-020-09744-x

Brosseau-Liard, P. E., & Savalei, V. (2014). Adjusting incremental fit indices for nonnormality. Multivariate Behavioral Research, 49(5), 460–470. https://doi.org/10.1080/00273171.2014.933697

Brosseau-Liard, P. E., Savalei, V., & Li, L. (2012). An investigation of the sample performance of two nonnormality corrections for RMSEA. Multivariate Behavioral Research, 47(6), 904–930. https://doi.org/10.1080/00273171.2012.715252

Christensen, A. P., & Golino, H. (2021). Estimating the stability of psychological dimensions via bootstrap exploratory graph analysis: A Monte Carlo simulation and tutorial. Psych, 3(3), 479–500. https://doi.org/10.3390/psych3030032

De Neve, D., Bronstein, M. V., Leroy, A., Truyts, A., & Everaert, J. (2023). Emotion regulation in the classroom: A network approach to model relations among emotion regulation difficulties, engagement to learn, and relationships with peers and teachers. Journal of Youth and Adolescence, 52(2), 273–286. https://doi.org/10.1007/s10964-022-01678-2

Engin, M. (2017). Analysis of students’ online learning readiness based on their emotional intelligence level. Universal Journal of Educational Research, 5(12A), 32–40. https://doi.org/10.13189/ujer.2017.051306

Ferraces Otero, M. J., Lorenzo Moledo, M., Godás Otero, A., & Santos Rego, M. A. (2020). Students’ mediator variables in the relationship between family involvement and academic performance: Effects of the styles of involvement. Psicología Educativa, 27(1), 85–92. https://doi.org/10.5093/psed2020a19

Ferrando, P. J., Hernandez-Dorado, A., & Lorenzo-Seva, U. (2022). Detecting correlated residuals in exploratory factor analysis: New proposals and a comparison of procedures. Structural Equation Modeling: A Multidisciplinary Journal, 29(4), 630–638. https://doi.org/10.1080/10705511.2021.2004543

Ferrando, P. J., & Lorenzo-Seva, U. (2000). Unrestricted versus restricted factor analysis of multidimensional test items: Some aspects of the problem and some suggestions. Psicológica, 21(3), 301–323. https://bit.ly/40RAVNc

Ferrando, P. J., Lorenzo-Seva, U., & Bargalló-Escrivà, M. T. (2023). Gulliksen’s pool: A quick tool for preliminary detection of problematic items in item factor analysis. PLoS ONE, 18(8), e0290611. https://doi.org/10.1371/journal.pone.0290611

Gao, H., Ou, Y., Zhang, Z., Ni, M., Zhou, X., & Liao, L. (2021). The relationship between family support and e-learning engagement in college students: The mediating role of e-learning normative consciousness and behaviors and self-efficacy. Frontiers in Psychology, 12, 573779. https://doi.org/10.3389/fpsyg.2021.573779

Golino, H. F., & Epskamp, S. (2017). Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE, 12(6), e0174035. https://doi.org/10.1371/journal.pone.0174035

Harley, J. M., Pekrun, R., Taxer, J. L., & Gross, J. J. (2019). Emotion regulation in achievement situations: An integrated model. Educational Psychologist, 54(2), 106–126. https://doi.org/10.1080/00461520.2019.1587297

Hassan Abuhassna, Freed Awae, Kawthar Bayoumi, Diaya Uddeen Alzitawi, Ahmed H Alsharif, & Noraffandy Yahaya. (2022). Understanding online learning readiness among university students: A bibliometric analysis. International Journal of Interactive Mobile Technologies (iJIM), 16(13), 81–94. https://doi.org/10.3991/ijim.v16i13.30605

Henry, M. (2020). Online student expectations: A multifaceted, student-centred understanding of online education. Student Success, 11(2), 91–98. https://doi.org/10.5204/ssj.1678

Hernández González, C. A., & Blackford, B. J. (2022). Engagement as antecedent of academic achievement and the moderating impact of work-family-school inter-role conflict for online graduate students. The International Journal of Management Education, 20(3), 100676. https://doi.org/10.1016/j.ijme.2022.100676

Hernández Gutiérrez, M., & Enríquez Vázquez, L. (2022). Habilidades del futuro para los estudiantes del SUAyED [Skills for the future in students at SUAyED]. Revista Digital Universitaria, 23(6). https://doi.org/10.22201/cuaieed.16076079e.2022.23.6.2

Hernández Ortiz, S. E., Edel Navarro, R., & Esquivel Gámez, I. (2023). Agentes de la educación en línea asociados con la permanencia del estudiante [Online educational agents associated with student retention]. Educación Superior, 34, 133–157. https://doi.org/10.56918/es.2022.i34.pp133-157

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

James, J. L. (2022). Students as stakeholders: Understanding expectations can increase student retention. Journal of College Student Retention: Research, Theory & Practice, 24(1), 20–42. https://doi.org/10.1177/1521025119898844

Kundu, A. (2020). Toward a framework for strengthening participants’ self-efficacy in online education. Asian Association of Open Universities Journal, 15(3), 351–370. https://doi.org/10.1108/AAOUJ-06-2020-0039

Landrum, B., Bannister, J., Garza, G., & Rhame, S. (2021). A class of one: Students’ satisfaction with online learning. Journal of Education for Business, 96(2), 82–88. https://doi.org/10.1080/08832323.2020.1757592

Lehikko, A. (2021). Measuring self-efficacy in immersive virtual learning environments: A systematic literature review. Journal of Interactive Learning Research, 32(2), 125–146. https://doi.org/10.70725/672759jhzbkw

Li, S. (2024). Learning analytics enhanced online learning support. Routledge.

Lim, J. R. N., Rosenthal, S., Sim, Y. J. M., Lim, Z.-Y., & Oh, K. R. (2021). Making online learning more satisfying: The effects of online-learning self-efficacy, social presence and content structure. Technology, Pedagogy and Education, 30(4), 543–556. https://doi.org/10.1080/1475939X.2021.1934102

Matteucci, M. C., & Soncini, A. (2021). Self-efficacy and psychological well-being in a sample of Italian university students with and without Specific Learning Disorder. Research in Developmental Disabilities, 110, 103858. https://doi.org/10.1016/j.ridd.2021.103858

Mejri, S., & Borawski, S. (2023). Predictors of persistence and success in online education. International Journal on E-Learning, 22(3), 239–257. https://doi.org/10.70725/807249yyafpy

Mensah, C., Kugbonu, M. A., Appietu, M. E., Nti, G. A., & Forson, M. A. (2024). Social support, computer self-efficacy, online learning engagement and satisfaction among undergraduate hospitality students. Cogent Education, 11(1), 2335803. https://doi.org/10.1080/2331186X.2024.2335803

Nadeem, A., Umer, F., & Anwar, M. J. (2023). Emotion regulation as predictor of academic performance in university students. Journal of Professional & Applied Psychology, 4(1), 20–33. https://doi.org/10.52053/jpap.v4i1.157

Neroni, J., Meijs, C., Kirschner, P. A., Xu, K. M., & De Groot, R. H. M. (2022). Academic self-efficacy, self-esteem, and grit in higher online education: Consistency of interests predicts academic success. Social Psychology of Education, 25(4), 951–975. https://doi.org/10.1007/s11218-022-09696-5

Ozer, S. (2024). Social support, self‐efficacy, self‐esteem, and well‐being during COVID-19 lockdown: A two‐wave study of Danish students. Scandinavian Journal of Psychology, 65(1), 42–52. https://doi.org/10.1111/sjop.12952

Panigrahi, R., Srivastava, P. R., & Panigrahi, P. K. (2021). Effectiveness of e-learning: The mediating role of student engagement on perceived learning effectiveness. Information Technology & People, 34(7), 1840–1862. https://doi.org/10.1108/ITP-07-2019-0380

Pekrun, R., Marsh, H. W., Suessenbach, F., Frenzel, A. C., & Goetz, T. (2023). School grades and students’ emotions: Longitudinal models of within-person reciprocal effects. Learning and Instruction, 83, 101626. https://doi.org/10.1016/j.learninstruc.2022.101626

Yang, D., Chen, P., Wang, K., Li, Z., Zhang, C., & Huang, R. (2023). Parental involvement and student engagement: A review of the literature. Sustainability, 15(7), 5859. https://doi.org/10.3390/su15075859

Yokoyama, S. (2024). Impact of academic self-efficacy on online learning outcomes: A recent literature review. EXCLI Journal, 23. https://doi.org/10.17179/EXCLI2024-7502

Yu, J., Huang, C., He, T., Wang, X., & Zhang, L. (2022). Investigating students’ emotional self-efficacy profiles and their relations to self-regulation, motivation, and academic performance in online learning contexts: A person-centered approach. Education and Information Technologies, 27(8), 11715–11740. https://doi.org/10.1007/s10639-022-11099-0

Yunusa, A. A., & Umar, I. N. (2021). A scoping review of Critical Predictive Factors (CPFs) of satisfaction and perceived learning outcomes in E-learning environments. Education and Information Technologies, 26(1), 1223–1270. https://doi.org/10.1007/s10639-020-10286-1

Publicado

19.01.2026

Cómo citar

De la Rosa Gómez, A., Valencia, P. D., Ochoa Carrasco, I., & Razo-Ruvalcaba, A. C. (2026). Validación de una batería socioemocional para aspirantes de educación superior en línea. Revista Fuentes, 28(1), 14–27. https://doi.org/10.12795/revistafuentes.2026.28828

Número

Sección

Investigaciones