Learning Analytics and Student Retention: A Longitudinal Study in Virtual Higher Education
DOI:
https://doi.org/10.12795/revistafuentes.2025.27592Keywords:
Higher education, Data analysis, Student evaluation, Distance education, Student participation, Educational indicators, Educational technology, Dropout rateAbstract
Learning analytics (LA) has emerged as an effective tool to address challenges such as student retention and academic performance in virtual higher education programs. This study aims to analyze the relationship between participation patterns in digital academic activities and the academic performance of online postgraduate students, as well as their connection to student persistence. Three key dimensions are examined: participation trends and clusters over time; the factors that predict academic performance and retention; and the potential of predictive models to personalize pedagogical strategies. A quantitative, longitudinal, and exploratory design was employed, using a sample of 393 students enrolled at a Colombian university in 2024. Data was collected from institutional systems and analyzed through mixed linear models, machine learning algorithms, and time series analysis. The academic activities evaluated included application projects, practical cases, exams, discussion forums, and overall participation. Results indicate that practical activities, such as application projects and case studies, yield the highest levels of engagement and have a significant impact on academic performance. In contrast, forums and exams show lower levels of interaction. The clustering analysis identified three distinct student groups based on participation patterns, enabling more personalized pedagogical strategies. The findings suggest that LA provides a solid foundation for designing targeted interventions aimed at improving student retention and optimizing academic performance in virtual higher education. This approach reinforces the value of data-driven educational personalization.
Downloads
References
Anthology. (2024). Leveraging actionable data to increase student retention [Sitio web]. Anthology. Recuperado de https://www.anthology.com/story/leveraging-actionable-data-to-increase-student-retention
Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue. https://doi.org/10.1145/2330601.2330666
ASEE Advances. (2020). Active student engagement in online STEM classes: Approaches and recommendations. Advances in Engineering Education. Recuperado de https://advances.asee.org/active-student-engagement-in-online-stem-classes-approaches-and-recommendations/
Astin, A. W. (1984). Student Involvement: A Developmental Theory for Higher Education. Journal of College Student Personnel, 25, 297-308.
Bean J. P., & Eaton S. (2000). A psychological model of college student retention. In Braxton J. M. (Ed.), Reworking the departure puzzle: New theory and research on college student retention. Nashville: University of Vanberbilt Press.
Bergdahl, N., Bond, M., Sjöberg, J., Dougherty, M., & Oxley, E. (2024). Unpacking student engagement in higher education learning analytics: a systematic review. International Journal Of Educational Technology In Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00493-y
Brdnik, S., Šumak, B., & Podgorelec, V. (2022). Aligning Learners' Expectations and Performance by Learning Analytics System with a Predictive Model. arXiv preprint arXiv:2211.07729.
Canales, R., & Rojas, L. (2020). Igualdad de género y rendimiento académico en entornos virtuales de educación superior. Calidad en la Educación, 40(5), 137-156. https://www.scielo.cl/scielo.php?pid=S0718-50062020000500137&script=sci_arttext
Candia, C., Maldonado-Trapp, A., Lobos, K., Peña, F., & Bruna, C. (2022). Disadvantaged students increase their academic performance through collective intelligence exposure in emergency remote learning due to COVID-19. arXiv preprint arXiv:2203.05621.
Carmean, C., Kil, D., & Baer, L. (2021, Agosto 10). Why data matters for student success in a post-pandemic world [Artículo de revista]. Educause Review. Recuperado de https://er.educause.edu/articles/2021/8/why-data-matters-for-student-success-in-a-post-pandemic-world
Cruzado, C., & Ortega, A. (2022). Relación entre motivación intrínseca y rendimiento académico en estudiantes adultos del Instituto de Educación Superior Pedagógico Público "Huancavelica". Revista Iberoamericana de Educación Superior, 18(2), 45-60. https://dialnet.unirioja.es/servlet/articulo?codigo=9119185
De la Iglesia Villasol, M. C. (2020). Analítica de los usos digitales y rendimiento académico. Un estudio de caso con estudiantes universitarios. REIRE Revista D Innovació I Recerca En Educació, 13(2). https://doi.org/10.1344/reire2020.13.229267
Díaz-García, I., et al. (2023). Estrategias de aprendizaje y rendimiento académico en el contexto universitario. Revista de Educación y Desarrollo, 10(2), 45-60.
Digital Learning Edge. (2024, abril 15). Enhancing online STEM course design for effective learning [Sitio web]. Recuperado de https://digitallearningedge.com/about/
Donelan, H., & Kear, K. (2023). Online group projects in higher education: persistent challenges and implications for practice. Journal Of Computing In Higher Education, 36(2), 435-468. https://doi.org/10.1007/s12528-023-09360-7
Downes, S. (2012). Connectivism and connective knowledge. Essays on meaning and learning networks. Recuperado de http://www.downes.ca/me/mybooks.htm
EdTech Magazine. (2021, octubre). Higher education turns to data analytics to bolster student success [Artículo de revista]. EdTech Magazine. Recuperado de https://edtechmagazine.com/higher/article/2021/10/higher-education-turns-data-analytics-bolster-student-success
González, P., & López, A. (2024). Gender participation patterns in online learning environments. Journal of Digital Education Research, 12(3), 123-140. https://arxiv.org/abs/2406.11864
Guzmán Rincón, A., Barragán, S., & Cala Vitery, F. (2021). Ruralidad y deserción en programas de educación superior virtual en Colombia. Sustainability, 13(9), 4953. https://doi.org/10.3390/su13094953
Heryanto, N., Firmansyah, F. H., & Rosmansyah, Y. (2024). Exploring Collaboration in Multiplayer Gamification: A Systematic Literature Review. IEEE Access, 1. https://doi.org/10.1109/access.2024.3477465
IBM. (2022). Data reliability [Sitio web]. IBM. Recuperado de https://www.ibm.com/topics/data-reliability
Kaensar, C., & Wongnin, W. (2023). Predicting new student performances and identifying important attributes of admission data using machine learning techniques with hyperparameter tuning. Eurasia Journal Of Mathematics Science And Technology Education, 19(12), em2369. https://doi.org/10.29333/ejmste/13863
Kaliisa, R., Misiejuk, K., López-Pernas, S., Khalil, M., & Saqr, M. (2023). Have Learning Analytics Dashboards Lived Up to the Hype? A Systematic Review of Impact on Students' Achievement, Motivation, Participation and Attitude. arXiv preprint arXiv:2312.15042.
Li, C., Herbert, N., Yeom, S., & Montgomery, J. (2022). Retention factors in STEM education identified using learning analytics: A systematic review. Education Sciences, 12(11), 781. https://doi.org/10.3390/educsci12110781
Macfadyen, L. P., & Dawson, S. (2009). Mining LMS data to develop an “early warning system” for educators: A proof of concept. Computers & Education, 54(2), 588-599. https://doi.org/10.1016/j.compedu.2009.09.008
Martin-Caro, E. (2024). Análisis de estrategias innovadoras para retención estudiantil con inteligencia artificial: una perspectiva multidisciplinaria. European Public & Social Innovation Review, 9, 1-20. https://doi.org/10.31637/epsir-2024-440
McKinsey & Company. (2022). Using machine learning to improve student success in higher education [Sitio web]. Recuperado de https://www.mckinsey.com/industries/education/our-insights/using-machine-learning-to-improve-student-success-in-higher-education
Miranda, H., Miranda-Zapata, E., Lara, L., & Saracostti, M. (2021). Análisis Longitudinal del Rendimiento Escolar según el Compromiso Escolar y Factores Contextuales: El Caso Chileno. Revista Iberoamericana de Diagnóstico y Evaluación - E Avaliação Psicológica, 163. https://doi.org/10.21865/ridep59.2.13
Mutanga, M. B. (2024). Students’ Perspectives and Experiences in Project-Based Learning: A Qualitative Study. Trends In Higher Education, 3(4), 903-911. https://doi.org/10.3390/higheredu3040052
Nieuwoudt, J. E., & Pedler, M. L. (2021). Student retention in higher education: Why students choose to remain at university. Journal of Student Affairs Research and Practice, 25(2). https://doi.org/10.1177/1521025120985228
Nimy, E., & Mosia, M. (2024). Modelling student retention in tutorial classes with uncertainty—A Bayesian approach to predicting attendance-based retention. Education Sciences, 14(8), 830. https://doi.org/10.3390/educsci14080830
Oudat, M. S., Cheung, S. K. S., & Abu-Qdais, M. (2023). Enhancing sustainable learning in online education: The role of motivation, engagement, self-regulation, and perception. Sustainability, 16(2), 689. https://doi.org/10.3390/su16020689
Pulker, H. (2019). Learning analytics to improve retention: Some critical questions. Distances Et Médiations Des Savoirs, 28(28). https://doi.org/10.4000/dms.4602
Quadri, A. T., & Shukor, N. A. (2021). The benefits of learning analytics to higher education institutions: A scoping review. International Journal of Emerging Technologies in Learning (iJET), 16(23), 4–15. https://doi.org/10.3991/ijet.v16i23.27471
Sánchez-Gelabert, A. y Elías, M. (2017). Los estudiantes universitarios no tradicionales y el abandono de los estudios. Estudios sobre Educación, 32, 27–48. https://doi.org/10.15581/004.32.27-48
Segovia-García, N., & Said-Hung, E. M. (2021). Factores de satisfacción de los alumnos en e-learning en Colombia. Revista Mexicana de Investigación Educativa, 26(89), 595-621. Recuperado de https://cutt.ly/LbUPghi
Segovia-García, N., Viñambres, D. O., & Álamo, E. M. (2020). La evaluación del aprendizaje social como herramienta de predicción del rendimiento académico y la permanencia en programas de Educación Superior virtual. En Claves para la innovación pedagógica ante los nuevos retos: Respuestas en la vanguardia de la práctica educativa (pp. 3798-3806). Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=7758458
Segovia-García, N., Said-Hung, E., & Aguilera, F. J. G. (2022). Educación superior virtual en Colombia: factores asociados al abandono. Educación XX1, 25(1), 197-218. https://doi.org/10.5944/educxx1.30455
Segovia-García, N., & Segovia-García, L. (2024). Chatbot de IA para prevenir el abandono de la educación superior: una revisión de la literatura. Education In The Knowledge Society (EKS), 25, e31416. https://doi.org/10.14201/eks.31416
Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30-32.
The Big Data Framework. (2024). Understanding data quality [Sitio web]. The Big Data Framework. Recuperado de https://www.bigdataframework.org/knowledge/understanding-data-quality
Times Higher Education. (2024). How digital tools can enhance STEM teaching [Sitio web]. Recuperado de https://www.timeshighereducation.com/hub/digitaled/p/how-digital-tools-can-enhance-stem-teaching
Tinto, V. (1987). Leaving college: Rethinking the causes and cures of student attrition. University Of Chicago Press
Villegas-Ch, W., Govea, J., & Revelo-Tapia, S. (2023). Improving student retention in institutions of higher education through machine learning: A sustainable approach. Sustainability, 15(19), 14512. https://doi.org/10.xxxx/suxxxx
Vizcaíno, P. (2024). Evaluación de impacto de plataformas de aprendizaje en línea en el rendimiento académico. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 5(2), 730-732.
Wang, X., Hall, A., & Wang, Q. (2024). Online learning environment and student engagement: The role of feedback and interaction. The Australian Educational Researcher, 51(1), 1-17. https://doi.org/10.1007/s13384-024-00689-1
White, R. T., & Arzi, H. J. (2005). Longitudinal studies: Designs, validity, practicality, and value. Research in Science Education, 35(2), 137-149. https://doi.org/10.1007/s11165-004-3437-y
Xu, F. (2019). Towards a rational constructivist theory of cognitive development. Psychological Review, 126(6), 841-864. https://doi.org/10.1037/rev0000153
Zhang, M., Du, X., Rice, K., Hung, J., & Li, H. (2021). Revealing at-risk learning patterns and corresponding self-regulated strategies via LSTM encoder and time-series clustering. Information Discovery And Delivery, 50(2), 206-216. https://doi.org/10.1108/idd-12-2020-0160
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ester Martin Caro Alamo, Nuria Segovia-García

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in this journal accept the following conditions:
Authors conserve the copyrights and cede to the journal the right for first publication, with the work registered with the attribution licence of Creative Commons, which allows third parties to use the published work as long as they mention the authorship and the first publication in this journal.
The authors may make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (e.g. include it an institutional repository or publish it in a book) as long as it clearly indicates that the work was first published in this journal.
Authors are allowed and indeed recommended to publish their work on the internet (for example on institutional or personal pages) before and during the revision and publication process, because it can lead to productive exchanges and greater and faster dissemination of the published work (see The Effect of Open Access).