Combined impact of drought and land use changes on water resources in the Tabular Middle Atlas, Morocco
DOI:
https://doi.org/10.12795/rea.2024.i48.10Palabras clave:
Recursos hídricos, Sequía, Áreas irrigadas, Tabular Atlas MedioResumen
La degradación cuantitativa de los recursos hídricos en el Tabular Medio Atlas está vinculada al clima y a las modificaciones en las prácticas agrícolas. La identificación de la relación entre estas variables se aborda mediante el análisis de datos hidroclimáticos, el trabajo de campo y el procesamiento de imágenes satelitales Landsat en dos sectores representativos del Medio Atlas. Las entrevistas con la población y las mediciones piezométricas realizadas en la depresión de Guigou muestran que el nivel freático ha descendido de unos pocos metros de profundidad a más de 45 metros en varios lugares. Además, el seguimiento del área superficial del lago Aoua entre septiembre de 1984 y septiembre de 2022 a partir de imágenes satelitales indica que ha experimentado variaciones notables, con períodos de sequía prolongada. La situación muy crítica de los recursos hídricos en este sector de Marruecos se explica por la recurrencia de períodos de sequía de gravedad variable, el aumento de la temperatura y la extensión progresiva de las áreas irrigadas en todas las depresiones. En tres décadas, las áreas irrigadas se han multiplicado por más de cinco en la depresión de Guigou y por más de tres en las depresiones de Imouzzer-Aoua. Los cambios en los parámetros climáticos asociados a las modificaciones en las prácticas agrícolas han influido fuertemente en los recursos hídricos en el Medio Atlas Tabular.
Descargas
Citas
Abera, W., Tamene, L., Abegaz, A., & Solomon, D. (2019). Understanding climate and land surface changes impact on water resources using Budyko framework and remote sensing data in Ethiopia. Journal of Arid Environments, 167, 56-64. https://doi.org/10.1016/j.jaridenv.2019.04.017
ABHS. (2010). Etude de restauration des lacs naturels du bassin du Sebou. Mission I situation actuelle des lacs. Royaume du Maroc.
Ahmed, M., Aqnouy, M., & Stitou El Messari, J. (2021). Sustainability of Morocco’s groundwater resources in response to natural and anthropogenic forces. Journal of Hydrology, 603, 126866. https://doi.org/10.1016/j.jhydrol.2021.126866
Akdim, B., Sabaoui, A., Amyay, A., Laaouane, M., Gille, E., & Obda, Kh. (2011). Influences hydro karstiques du système sourcier Aïn Sebou-Timedrine-Ouamender Sur l’hydrologie de l’oued Sebou (Moyen Atlas, Maroc). Zeitschrift für Geomorphologie, 56, 165-181. https://doi.org/10.1127/0372-8854/2011/0063
Al Atawneh, D., Cartwright, N., & Bertone, E. (2021). Climate change and its impact on the projected values of groundwater recharge: A review. Journal of Hydrology, 601, 126602. https://doi.org/10.1016/j.jhydrol.2021.126602
Bahir, M., Ouhamdouch, S., & Ouazar, D. (2021). An assessment of the changes in the behavior of the groundwater resources in arid environment with global warming in Morocco. Groundwater for Sustainable Development, 12, 100541. https://doi.org/10.1016/j.gsd.2020.100541
Bahir, M., Ouhamdouch, S., Ouazar, D., & El Moçayd, N. (2020). Climate change effect on groundwater characteristics within semi-arid zones from western Morocco. Groundwater for Sustainable Development, 11, 100380. https://doi.org/10.1016/j.gsd.2020.100380
Bentayeb, A., & Leclerc, C. (1977). Le Moyen Atlas, le causse moyen atlasique. In Ressources en Eau du Maroc Tome 3 domaines atlasique et sud atlasique (Eds.) (pp. 37-65). Service géologique du Maroc, Rabat.
Bhatnagar, S., Gill, L., Regan, S., Naughton, O., Johnston, P., Waldren, S., & Ghosh, B. (2020). Mapping vegetation communities inside wetlands using Sentinel-2 imagery in Ireland. Int J Appl Earth Obs Geoinformation, 88, 102083. https://doi.org/10.1016/j.jag.2020.102083
Bretreger, D., Yeoa, I.Y., Hancock, G., & Willgoose, G. (2020). Monitoring irrigation using landsat observations and climate data over regional scales in the Murray-Darling Basin. Journal of Hydrology, (590), 125356. https://doi.org/10.1016/j.jhydrol.2020.125356
Brunner, P., Hunkeler, D., Rössler, O., Holzkämper, A., Cochand, F., & et al. (2021). Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources. Science of the Total Environment, 798, 148759. https://doi.org/10.1016/j.scitotenv.2021.148759.
Congedo, L. (2021) Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6, 3172. https://doi.org/10.21105/joss.03172
De Girolamo, A.M., Barca, E., Leone, M., & Lo Porto, A. (2022). Impact of long-term climate change on flow regime in a Mediterranean basin. Journal of Hydrology: Regional Studies, 41, 101061. https://doi.org/10.1016/j.ejrh.2022.101061
Delgado-Artés, R., Garófano-Gómez, V., Oliver-Villanueva, J.V., & Rojas-Briales, E. (2022). Land use/cover change analysis in the Mediterranean region: a regional case study of forest evolution in Castelló (Spain) over 50 years. Land Use Policy, (114), 105967. https://doi.org/10.1016/j.landusepol.2021.105967
Eid, A.N.M., Olatubara, C.O., Ewemoje, T.A., El-Hennawy, M.T., & Farouk, H. (2020). Inland wetland time-series digital change detection based on SAVI and NDWI indecies: Wadi El-Rayan lakes, Egypt. Remote Sensing Applications: Society and Environment, 19, 100347. https: //doi.org/10.1016/j.rsase.2020.100347
El Assaoui, N., Amraoui, F., & El Mansouri, B. (2015). Modélisation numerique de l’effet des changements climatiques sur la nappe de berrechid (Maroc). European Scientific Journal, 11, 218-239. https://eujournal.org/index.php/esj/article/view/6081
El Assaoui, N., Sadok, A., & Merimi, I. (2021). Impacts of climate change on Moroccan’s groundwater resources: State of art and development prospects. Materials Today: Proceedings, 45, 7690–7696. https://doi.org/10.1016/j.matpr.2021.03.220
El-Bouhali, A. (2023). L’évolution des surfaces irriguées et leur impact sur les ressources en eau dans le contexte climatique actuel au Moyen Atlas tabulaire. [Thèse de doctorat. Université Sidi Mohamed Ben Abdellah – Fès].
Erostate, M., Huneau, F., Garel, E., Ghiotti, S., Vystavna, Y., Garrido, M., & Pasqualini, V. (2020). Groundwater dependent ecosystems in coastal Mediterranean regions: Characterization, challenges and management for their protection. Water Research, 172, 115461. https://doi.org/10.1016/j.watres.2019.115461
Esper, J., Frank, D., Buntgen, U., Verstege, A., Luterbacher, J., & Xoplaki, E. (2007). Long-term drought severity variations in Morocco. Geophysical Research Letters, 34, L17702. https://doi.org/10.1029/2007GL030844
GCOS. (2016). The global observing system for climate: implementation needs. Global Climate
Observing System implementation plan. https://unfccc.int/files/science/workstreams/systematic_observation/application/pdf/gcos_ip_10oct2016.pdf.
Hughes, A., Mansour, M., Ward, R., Kieboom, N., Allen, S., Seccombe, D., Charlton, M., & Prudhomme, C. (2021). The impact of climate change on groundwater recharge: National-scale assessment for the British mainland. Journal of Hydrology, 598, 126336. https://doi.org/10.1016/j.jhydrol.2021.126336
Huntington, J., McGwire, K., Morton, C., Snyder, K., Peterson, S., Erickson, T., Niswonger, R., Carroll, R., Smith, G., & Allen, R. (2016). Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sensing of Environment, 185, 186–197. http://dx.doi.org/10.1016/j.rse.2016.07.004
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC [Stocker, T.F., Qin, D., Plattner, G.K., et al., (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C [Masson-Delmotte, V., Zhai, P., Pörtner, H.O., et al., (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/ 10.1017/9781009157940
Jennan, L. (1986). Mutations récentes des campagnes du Moyen Atlas et de ses bordures. Méditerranée, 4, 49–62. https://www.persee.fr/doc/medit_0025-8296_1986_num_59_4_2426
Jiménez-Olivencia, Y., Ibáñez-Jiménez, Á., Porcel-Rodríguez, L., & Zimmerer, K. (2021). Land use change dynamics in Euro-mediterranean mountain regions: Driving forces and consequences for the landscape. Land Use Policy, 109, 105721. https://doi.org/10.1016/j.landusepol.2021.105721
Jumaah, H.J., Ameen, M.H., Mohamed, G.H., & Ajaj, Q.M. (2022). Monitoring and evaluation Al-Razzaza lake changes in Iraq using GIS and remote sensing technology. The Egyptian Journal of Remote Sensing and Space Sciences, 25, 313–321. https://doi.org/10.1016/j.ejrs.2022.01.013
Krogulec, E. (2018). Evaluating the risk of groundwater drought in groundwater-dependent ecosystems in the central part of the Vistula River Valley, Poland. Ecohydrology & Hydrobiology, 18, 82–91. https://doi.org/10.1016/j.ecohyd.2017.11.003
Majola, K., Xu, Y. & Kanyerere, T. (2022). Review: Assessment of climate change impacts on groundwater-dependent ecosystems in transboundary aquifer settings with reference to the Tuli-Karoo transboundary aquifer. Ecohydrology & Hydrobiology, 22, 126–140. https://doi.org/10.1016/j.ecohyd.2021.08.013
Maselli, F., Battista, P., Chiesi, M., Rapi, B., Angeli, L., Fibbi, L., Magno, R. & Gozzini, B. (2020). Use of Sentinel-2 MSI data to monitor crop irrigation in Mediterranean areas. Int J Appl Earth Obs Geoinformation, 93, 102216. https://doi.org/10.1016/j.jag.2020.102216
McKee, T.B., Doesken, N.J. & Kleist, J. (1993). The relationship of drought frequency and duration of time scales. In Eighth Conference on Applied Climatology, American Meteorological Society (pp. 179-184).
Ministère de l’Équipement et de l’Eau. (2024). La situation des ressources en eau dans notre pays : les mesures prises et le programme d’urgence pour garantir l’eau. Royaume du Maroc. Accessed, February 9, 2024. [Text in Arabic].
NOAA National Centers for Environmental information. (2022). Climate at a Glance: Global Time Series, published. https://www.ncdc.noaa.gov/cag/
Nunes, J.P., Jacinto, R., & Keizer, J.J. (2017). Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir. Science of the Total Environment, 584–585, 219–233. https://doi.org/10.1016/j.scitotenv.2017.01.131
Obodai, J., Adjei, K.A., Odai, S.N., & Lumor, M. (2019) Land use/land cover dynamics using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sensing Applications: Society and Environment, 13, 247–256. https://doi.org/10.1016/j.rsase.2018.10.007
Pei, H., Liu, M., Shen, Y., Xu, K., Zhang, H., Li, Y., & Luo J. (2022). Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of the Total Environment, 809, 151153. https://doi.org/10.1016/j.scitotenv.2021.151153
Peltonen-Sainio, P., Juvonen, J., Korhonen, N., Parkkila, P., Sorvali, J., & Gregow, H. (2021). Climate change, precipitation shifts and early summer drought: An irrigation tipping point for Finnish farmers? Climate Risk Management, 33, 100334. https://doi.org/10.1016/j.crm.2021.100334
Qadem, A. (2015). Quantification, modélisation et gestion de la ressource en eau dans le bassin versant du haut Sebou (Maroc). [Thèse de doctorat de l’Université Sidi Mohamed Ben Abdelah et l’Université de Lorraine].
Qadem, Z., Obda, Kh., Qadem, A., & Lasrin M. (2020). L’impact de la sècheresse sur les réservoirs souterrains dans le plateau de Saïs, Maroc. Geomaghreb, 16, 22-33. https://revues.imist.ma/index.php/Geomaghreb/article/view/30815/16020
Quintas-Soriano, C., Buerkert, A., & Plieninger, T. (2022). Effects of land abandonment on nature contributions to people and good quality of life components in the Mediterranean region: A review. Land Use Policy, 116, 106053. https://doi.org/10.1016/j.landusepol.2022.106053
Rocha, J., Carvalho-Santos, C., Diogo, P., Beça, P., Keizer, J., & Nunes, J.P. (2020). Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Science of the Total Environment, 736, 139477. https://doi.org/10.1016/j.scitotenv.2020.139477
Ruiz, I., Almagro, M., García de Jalón, S., del Mar Solà, M., & José Sanz, M. (2020). Assessment of sustainable land management practices in Mediterranean rural regions. Journal of Environmental Management, 276, 111293. https://doi.org/10.1016/j.jenvman.2020.111293.
Samal, D.R., & Gedam, S. (2021). Assessing the impacts of land use and land cover change on water resources in the Upper Bhima river basin, India. Environmental Challenge, 5, 100251. https://doi.org/10.1016/j.envc.2021.100251
Secci, D., Tanda M.G., Marco D’Oria, M., Todaro, V., & Fagandini C. (2021). Impacts of climate change on groundwater droughts by means of standardized indices and regional climate models. Journal of Hydrology, 603, 127154. https://doi.org/10.1016/j.jhydrol.2021.127154
Seif-Ennasr, M., Zaaboul, R., Hirich, A., Caroletti, G.N., Bouchaou, L., El Morjani, Z.E.A., & et al. (2016). Climate change and adaptive water management measures in Chtouka Aït Baha region (Morocco). Science of the Total Environment, 573, 862–875. http://dx.doi.org/10.1016/j.scitotenv.2016.08.170
Stour, L., & Agoumi A. (2008). Sécheresse climatique au Maroc durant les dernières décennies. Hydroécol Appl, 16, 215-232. http://dx.doi.org/10.1051/hydro/2009003.
Su, Y., Ran, Y., Zhang, G., & Li, X. (2023). Remotely sensed lake area changes in permafrost regions of the Arctic and the Tibetan Plateau between 1987 and 2017. Science of the Total Environment, 880, 163355. http://dx.doi.org/10.1016/j.scitotenv.2023.163355
Tag, B. (1996). Development possibilities in the eastern Middle Atlas Mountains and their assessment by local actors. Revue de géographie alpine, 4, 51-60. https://www.persee.fr/doc/rga_0035-1121_1996_num_84_4_3885
Thenkabail, P.S., Dheeravath, V., Biradar, C.M., Gangalakunta, O.R.P., Noojipady, P., Gurappa, C., Velpuri, M., Gumma, M., & Li Y. (2009). Irrigated area maps and statistics of India using remote sensing and national statistics. Remote Sens, 1, 50-67. https://doi.org/10.3390/rs1020050
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S.M., Volaire, F., & et al. (2020). Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Science Reviews, 210, 103348. https://doi.org/10.1016/j.earscirev.2020.103348
Wang, J., Ding, J., Li, G., Liang, J., Yu, D., Aishan, T., Zhang, F., Yang, J., Abulimiti, A., & Liu, J. (2019). Dynamic detection of water surface area of Ebinur Lake using multi-source satellite data (Landsat and Sentinel-1A) and its responses to changing environment. Catena, 177, 189–201. https://doi.org/10.1016/j.catena.2019.02.020
Ward, F.A. (2022). Enhancing climate resilience of irrigated agriculture: A review. Journal of Environmental Management, 302, 114032. https://doi.org/10.1016/j.jenvman.2021.114032
WMO (World Meteorological Organization). (2012). Standardized Precipitation Index User Guide. https://www.droughtmanagement.info/literature/WMO_standardized_precipitation_index_user_guide_en_2012.pdf
Worqlul, A.W., Dile, Y.T., Jeong, J., Adimassu, Z., Lefore, N., Gerik, T., Srinivasan, R., & Clarke, N. (2019). Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana. Computers and Electronics in Agriculture, 157, 110–125. https://doi.org/10.1016/j.compag.2018.12.040
Xie, Y., & Lark, T.J. (2021). Mapping annual irrigation from Landsat imagery and environmental variables across the conterminous United States. Remote Sensing of Environment, 260, 112445. https://doi.org/10.1016/j.rse.2021.112445
Yifru, B.A., Chung, I.M., Kim, M.G., & Chang, S.W. (2021). Assessing the Effect of Land/Use Land Cover and Climate Change on Water Yield and Groundwater Recharge in East African Rift Valley using Integrated Model. Journal of Hydrology: Regional Studies, 37, 100926. https://doi.org/10.1016/j.ejrh.2021.100926
Zheng, B., Myint, S.W., Thenkabail, P.S., & Aggarwal, R.M. (2015). A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation, 34, 103–112. https://doi.org/10.1016/j.jag.2014.07.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Revista de Estudios Andaluces
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La edición electrónica de la Revista de Estudios Andaluces se ofrece en acceso abierto desde el número 28 publicado en 2011 hasta la actualidad. Las ediciones impresa y electrónica de esta Revista son editadas por la Editorial de la Universidad de Sevilla, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
La Revista de Estudios Andaluces no cobra tasas por el envío de trabajos, ni tampoco cuotas por la publicación de sus artículos. La Revista es gratuita desde el momento de la publicación de cada número y sus contenidos se distribuyen con la licencia “CreativeCommons Atribución-NoComercial-SinDerivar 4.0 Internacional” , que permite al usuario de la Revista de Estudios Andaluces criterios que cumplen con la definición de open access de la Declaración de Budapest en favor del acceso abierto. Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
Aceptado 2024-05-09
Publicado 2024-07-24
- Resumen 116
- PDF (English) 57
- HTML (English) 29