En la Theoria motus abstracti (TMA) de 1671 Leibniz afirmó, sin introducir mayores precisiones, que en el continuo hay infinitas partes en acto. Algunos exégetas entienden que las partes actuales han de entenderse como ‘indivisibles’. En este trabajo sostendremos que puede defenderse otra interpretación que evita los problemas que tiene la de aquellos intérpretes y que se esclarece sobre la base de los exámenes aritméticos de Leibniz inmediatamente posteriores a la redacción de la TMA. Así, mostraremos que habría un paralelismo entre los exámenes de Leibniz sobre el problema continuo y sobre series infinitas.
Descargas
Los datos de descargas todavía no están disponibles.