Algorithms on the law courts, do we really accept them? Perceptions of the use of artificial intelligence in criminal-legal decision-making
DOI:
https://doi.org/10.12795/IETSCIENTIA.2021.i02.05Keywords:
Criminal justice, Artificial Intelligence (AI), Algorithm, Recidivism riskAbstract
The irruption that evidence-based practices, decision automation and artificial intelligence have had in our society has also reached the criminal justice system. Judges and legal operators are already interacting with these types of tools without having sufficient information about how they are used or the impact they can really have. All of this, together with the lack of legal regulation and ethical requirements for their use, seems to be generating controversy, criticism and even a certain rejection of the implementation of these technologies among citizens. With a sample of 359 participants, this study offers a first approximation of the degree of public acceptance of the use of artificial intelligence in legal-criminal decision-making. The results obtained suggest that this level of acceptance is low, which opens the way for a debate on what conditions and limits should be imposed for the application of these technologies to be legitimate and in accordance with the principles of any social, democratic and rule of law state.
Downloads
References
AMADOR HIDALGO, L. (1996). Inteligencia artificial y sistemas expertos. Universidad de Córdoba.
ANDRÉS PUEYO, A., Y ECHEBURÚA, E. (2010). Valoración del riesgo de violencia: instrumentos disponibles e indicadores de aplicación. Psicothema, 22(3), 403-409.
ANDRÉS PUEYO, A., Y REDONDO ILLESCAS, S. (2007). Predicción de la violencia: entre la peligrosidad y la valoración del riesgo de violencia. Papeles del Psicólogo, 28(3), 157-173.
ANDRÉS-PUEYO, A. (2017). Manual de evaluación del riesgo de violencia. Metodología y ámbitos de aplicación. Ismael Loinaz. Anuario de Psicología Jurídica, 27, 127-129.
ARAUJO, T., HELBERGER, N., KRUIKEMEIER, S., Y DE VREESE, C.H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & SOCIETY, 35, 611-623. https://doi.org/10.1007/s00146-019-00931-w
BAKER, R. S. (2016) Stupid tutoring systems, intelligent humans. International Journal of Artificial Intelligence in Education, 26 (2), 600-614.
BOTNICK, C. (2015). Evidence-Based Practice and Sentencing in State Court: A Critique of the Missouri System. Wash. UJL & Pol’y, 49, 159– 180.
CAPDEVILA, M., et al. (2015). Tasa de reincidencia penitenciaria 2014. Centro de Estudios Jurídicos y Formación Especializada, Generalitat de Catalunya.
COHEN, J. (1992). A power primer. Psychological bulletin, 112(1), 155.
COUSIN, G. (2005). Case study research. Journal of geography in higher education, 29(3), 421-427.
DE MICHELE, M., BAUMGARTNER, P., BARRICK, K., COMFORT, M., SCAGGS, S., Y MISRA, S. (2019). What do criminal justice professionals think about risk assessment at pretrial. Fed. Probation, 83, 32.
DIETVORST, B., SIMMONS, J.P., Y MASSEY, C. (2015). Algorithm Aversion: People Erroneously Avoid Algorithms after Seeing Them Err. Journal of Experimental Psychology: General, 144 (1), 114-126. http://dx.doi.org/10.1037/xge0000033
FREEMAN, K. (2016). Algorithmic injustice: How the Wisconsin Supreme Court failed to protect due process rights in State v. Loomis. North Carolina Journal of Law & Technology, 18(5), 75.
GALLO, J. A. (2006). Errores y sesgos cognigtivos en la expansión del Derecho Penal. In Derecho y justicia penal en el siglo XXI: liber amicorum en homenaje al profesor Antonio González-Cuéllar García (pp. 31-48). Constitución y Leyes, COLEX.
GALLO, J.A. (2011). Las decisiones en condiciones de incertidumbre y el derecho penal. Revista para el Análisis del Derecho, 4.
GARRET, B.L., Y MONAHAN, J. (2020). Judging Risk. California Law Review ,108, 438-493.
GASEK, J. (2019). Community First: Why California’s Elimination of Cash Bail May Have Missed the Mark. McGeorge L. Rev., 51, 1.
GRAY, PAMELA N. Artificial legal intelligence. Ashgate Publishing Company, 1997.
GUTHRIE, C., RACHLINSKI, J. J., Y WISTRICH, A. J. (2001). Inside the judicial mind. Cornell Law Review, 86, 777-830.
HARTLEY, J. (2004). Case study research. In. Catherine Cassel e Gilian Symon. Essential guide to qualitative methods in organizational research.
JEE, K., Y KIM, G-H. (2013). Potentiality of big data in the medical sector: focus on how to reshape the healthcare system. Healthc InformRes, 19(2), 79-85.
KAHNEMAN, D. Y TVERSKY, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), pp. 263-291.
KAHNEMAN, D. Y TVERSKY, A. (1983). Extensional vs. intuitive reasoning: the conjunction fallacy in probability judgment. Psychological Review, 90(4), 293-315
KAHNEMAN, D., SLOVIC, P., Y TVERSKY, A (Eds.) (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.
KAHNEMAN, D., Y TVERSKY, A. (1972). Subjective probability: a judgment of representativeness. Cognitive Psychology, 3, 430-454.
KAHNEMAN, D., Y TVERSKY, A. (1973). On the psychology of prediction. Psychological Review, 80, 237-251.
KEHL, D., GUO P., Y KESSLER, S. (2017). Algorithms in the criminal justice system: assessing the use of risk assessments in sentencing. Berkman Klein Center for Internet & Society.
KIM, G-H., TRIMI, S., Y CHUNG, J-H. (2014). Big-Data Applications in the Government Sector. Communications of the ACM, 57(3), 78-85.
KYUNG LEE, M. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5 (1), 1-16. https://doi.org/10.1177/2053951718756684
LOINAZ, I. (2017). Manual de evaluación del riesgo de violencia. Metodología y ámbitos de aplicación. Pirámide.
MARTÍNEZ GARAY, L. (2018). Peligrosidad, algoritmos y due process: el caso State vs. Loomis. Revista de Derecho Penal y Criminología, 20, 485-502.
MARTÍNEZ GARAY, L. (2020). Evidence-based sentencing y evidencia científica. A la vez, algunas consideraciones sobre “políticas basadas en la evidencia” y el Derecho Penal. Teoría y Derecho: revista de pensamiento jurídico, 20, 238-277.
MARTÍNEZ GARAY, L., Y MONTES SUAY, F. (2018). El uso de valoraciones del riesgo de violencia en Derecho Penal: algunas cautelas necesarias. Revista para el Análisis del Derecho, 2, 2-47.
MCKAY, C. (2020). Predicting risk in criminal procedure: actuarial tools, algorithms, AI and judicial decision-making. Current Issues in Criminal Justice, 32(1), 22-39.
MIRÓ LLINARES, F. (2018). Inteligencia artificial y Justicia Penal: Más allá de los resultados lesivos causados por robots. Revista de Derecho Penal y Criminología, (20), 87-130.
MIRÓ LLINARES, F. (2020). Predictive Policing: Utopia or Dystopia? On attitudes towards the use of Big Data algorithms for law enforcement. Revista de Internet, Derecho y Política, (30).
MUÑOZ ARANGUREN, A. (2011). La influencia de los sesgos cognitivos en las decisiones jurisdiccionales: el factor humano. Una aproximación. Indret: Revista para el Análisis del Derecho, 2.
MYERS, D. G., Y LAMM, H. (1976). The group polarization phenomenon. Psychological Bulletin, 83, 602–27.
PIERSON, E. (2018). Demographics and discussion influence views on algorithmic fairness
ROBINSON (2013). Intuitions of Justice and the Utility of Desert. New York: Oxford University Press.
ROBINSON, P. H. (2000). Testing Lay Intuitions of Justice: How and Why? Hofstra Law Review, 28.
ROBINSON, P. H., Y DARLEY, J. M. (2007). Intuitions of justice: Implications for criminal law and justice policy. S. Cal. L. Rev.,81.
ROBINSON Y DARLEY (1995). Justice, Liability, and Blame. Community Views and the Criminal Law. Boulder: Westview Press.
SAXENA, N. A., HUANG, K., DEFILIPPIS, E., RADANOVIC, G., PARKES, D. C., Y LIU, Y. (2020). How do fairness definitions fare? Testing public attitudes towards three algorithmic definitions of fairness in loan allocations. Artificial Intelligence, 283.
SCURICH, N., Y KRAUSS, D.A. (2019). Public’s Views of Risk Assessment Algorithms and Pretrial Decision Making. Psychology, Public Policy and Law, 26(1), 1-32.
SELWYN, N. (2015). Data entry: towards the critical study of digital data and education. Learning, Media and Technology, 40(1),64–82.
SIEGEL, E. (2016). Predictive Analytics. The power to predict who will click, buy, lie or die. New Jersey: John Wiley and Sons.
SINGH, J. P., KRONER, D. G., WORMITH, J. S., DESMARAIS, S. L., Y HAMILTON, Z. (Eds.). (2018). Handbook of recidivism risk/needs assessment tools. John Wiley & Sons.
SKEEM, J., SCURICH, N., Y MONAHAN, J. (2020). Impact of risk assessment on judges’ fairness in sentencing relatively poor defendants. Law and human behavior.
SOLER, C. (2013). RisCanvi. Protocolo de evaluación y gestión del riesgo de violencia con población penitenciaria. Foro internacional de buenas prácticas en prevención de la delincuencia juvenil. Disponible online en https://www2.congreso.gob.pe/sicr/cendocbib/con4_uibd.nsf/138A3DBF8E8A85B905257C9F00803A14/$FILE/LinkClick6.pdf
SOLAR CAYÓN, J. I. (2020). La inteligencia artificial jurídica: nuevas herramientas y perspectivas metodológicas para el jurista. Revus. Journal for Constitutional Theory and Philosophy of Law/Revija za ustavno teorijo in filozofijo prava, (41).
STARR, S.B. (2014). Evidence-based sentencing and the scientific rationalization of discrimination. Stan L Rev,66, 842-873
STEVENSON, M. T., Y DOLEAC, J.L. (2019). Algorithmic Risk Assessment in the Hands of Humans. IZA-Institute of Labor Economics Discussion Paper Series, 12853. Disponible en línea en https://www.iza.org/publications/dp/12853/algorithmic-risk-assessment-in-the-hands-of-humans
STEVENSON, M.T., Y DOLEAC, J.L. (2018). The Roadblock to Reform. American Constitution Society.
SUNDAR, S., Y NASS, C. (2001). Conceptualizing sources in online news. Journal of Communication, 51(1), 52–72.
SWANBORN, P. (2010). Case study research: what, why and how?. Sage.
TERRANOVA, V. A., WARD, K., SLEPICKA, J., & AZARI, A. M. (2020). Perceptions of Pretrial Risk Assessment: An Examination Across Role in the Initial Pretrial Release Decision. Criminal Justice and Behavior, 47(8), 927–942. https://doi.org/10.1177/0093854820932204
TYLER, T.R. Y JACKSON, J. (2014). Popular legitimacy and the exercise of legal authority: Motivating compliance, cooperation and engagement. Psychology, Public Policy and Law, 20, 78-95. DOI: http://dx.doi.org/10.1037/a0034514
VAN DIJCK, J. (2014). Datafication, dataism and dataveillance: big data between scientific paradigm and ideology. Surveillance & Society, 12(2), 197-208.
WASON, P. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of Experimental Psychology, 12, 129–140.
Published
How to Cite
Issue
Section
License
Those authors being published in this journal agree to the following terms:
- Authors retain their copyright and they will guarantee to the journal the right of first publication of their work, which will be simultaneously subject to license recognition by Creative Commons that allows others to share such work provided it is stated the author’s name and his first publishing in IUS ET SCIENTIA.
- Authors may take other non-exclusive distribution license agreements version of the published work (e.g. deposit in an institutional digital file or publish it in a monographic volume) provided it is stated the initial publication in this journal.
- It is allowed and encouraged that Author s disseminate their work via the Internet (e. g. institutional digital files or on their website) prior to and during the submission process, which can lead to interesting exchanges and to increase citation of the published work.
- Abstract 661
- PDF (Español (España)) 434
- HTML (Español (España)) 131