Les chutes de blocs dans le bassin versant Zireg: facteurs de genèse et cartographie des zones à risques (Moyen Atlas - Maroc)
DOI:
https://doi.org/10.12795/rea.2025.i50.05Palabras clave:
Deslizamiento de montaña, Modelado, Cuenca hidrográfica de Zireg, Atlas Medio, MarruecosResumen
Los desprendimientos de rocas se caracterizan por la separación repentina de una masa rocosa de una pendiente inclinada, que desciende rápidamente río abajo bajo la influencia de la gravedad. Estos eventos representan uno de los riesgos más comunes en zonas de montaña, capaces de causar daños a personas y bienes, además de generar importantes costes financieros, especialmente cuando afectan viviendas e infraestructuras esenciales (carreteras, ferrocarriles y líneas eléctricas, etc.). Por ello, el estudio del riesgo de desprendimientos de rocas es crucial para mejorar su prevención y mitigar sus impactos. También es esencial evaluar cómo se desencadena este riesgo, dependiendo de las condiciones geográficas. Para estimar los niveles de riesgo de caída de rocas es necesario tener acceso a información precisa y a un método de análisis detallado combinado con una perspectiva geomorfológica sólida en función del propósito previsto. Para ello, el método utilizado tiene en cuenta los factores clave que desencadenan la formación de bloques de caída y su descenso (litología, pendiente y usos del suelo) en la cuenca del Zireg (Atlas Medio, Marruecos), basándose en un modelo que cuantifica la importancia de cada componente. Las características geomorfológicas de la cuenca del Zireg se distinguen por su relieve dinámico y su morfología irregular, marcada por fuertes pendientes formadas por materiales carbonatados y esquistosos, sensibles a los desprendimientos de rocas. Registra una morfogénesis activa amplificada por la agresividad del clima mediterráneo. Según el estudio descriptivo, hemos demostrado que un 4% del área total se encuentra marcada por grados de riesgo alto y muy alto, vinculado principalmente a la presencia de laderas de roca carbonatada, pendientes altas a muy altas y cobertura vegetal de densidad baja o media.
Descargas
Citas
Asteriou, A, Zekkos, D, & Manousakis, J. (2025). Fully remote assessment of rockfall incidents based on crowdsourced imagery. Bul. of Engineering Geology and the Environment, 84, 19. https://doi.org/10.1007/s10064-025-04218-x
Bajni, G., Camera, Corrado A.S., & Apuani, T. (2021). Deciphering meteorological influencing factors for Alpine rockfalls: a case study in Aosta Valley. Landslides, 18, 3279–3298. https://doi.org/10.1007/s10346-021-01697-3
Bebi, P., Kienast, F., & Schfnenberger, W. (2001). Assessing structures in mountain forests as a basis for investigating the forestsT dynamics and protective function. Forest Ecology and Management, 145(1-2), 3-14. https://doi.org/10.1016/S0378-1127(00)00570-3
Benaissa, M. (2024). Apport du SIG et des approches géomorphologiques à l’étude de l’érosion des sols et des mouvements de terrain dans le bassin versant de l’Ouèd Inaouène en amont du barrage Idriss 1er. [Thèse de doctorat, Faculté des lettres et sciences humaines Sais – Fès].
Bendel, L. (1948). Ingenieur - Geologie. Ein Handbuch fur Studum and Praxis. Springer Verlag, Wein, II, 6(1), 268 - 337. https://doi.org/10.1007/978-3-7091-5845-6
Benshili, K. (1989). Lias dogger du moyen Atlas plissé (Maroc). Sédimentologie, biostratigraphie et évolution paléogéographique. [PhD Thesis, Université de Lyon].
Berger, F., Qutel, C., & Dorren, L.K.A. (2002). Forest: a natural protection mean against rockfalls, but with which efficiency? International Congress Interpraevent 2002 in the Pacific Rim, Conference Proceedings, vol. 2 (pp. 815-826). Matsumoto, Japan.
Birien, T., & Gauthier, F. (2023). Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management. Natural Hazards and Earth System Sciences, 23(1), 343 - 360. https://doi.org/10.5194/nhess-23-343-2023
Bounab, A., Kamal, A., El Kharim, Y., Hamdouni, R., & Faghloumi, L. (2022). The importance of investigating causative factors and training data selection for accurate landslide susceptibility assessment: The case of Ain Lahcen commune (Tetouan, Northern Morocco). Geocarto International, 37, 9967 - 9997. https://doi.org/10.1080/10106049.2022.2028905
Brundsen, D. (1979). Mass mouvements. Progress in Geomorphology, Arnold, 130-186.
Charrière, A. (1990). Héritage hercynien et évolution géodynamique alpine d’une chaîne intra-continentale: le Moyen Atlas au SE de Fès (Maroc). [Thèse Doct. Etat, Toulouse].
Collins, B.D., & Stock, G.M. (2016). Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nature Geoscience, 9, 395-400. https://doi.org/10.1038/ngeo2686
Collin, A. (1846). Recherches expérimentales sur les glissements spontanés des terrains argileux. Carilian Goeury et Dalmont.
Colo, G. (1961). Contribution à l’étude du Jurassique du Moyen Atlas septentrional. Notes et mémoires du service géologique du Maroc, 139.
Cruden, D.M., & Varnes, D.J. (1996). Landslide Types and Processes. Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247, 36 - 75.
D’Amato, J., Hantz, D., Guerin, A., Jaboyedoff, M., Baillet, L., & Mariscal, A. (2016). Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff. Natural Hazards and Earth System Sciences, 16(3), 719 - 735. https://doi.org/10.5194/nhess-16-719-2016
Delonca, A., Gunzburger, Y., & Verdel, T. (2014), Statistical correlation between meteorological and rockfall databases. Natural Hazards and Earth System Sciences, 14(8), 1953-1964. https://doi.org/10.5194/nhess-14-1953-2014
Dorren, L.k., & Berger, F. (2006). Stem breakage of trees and energy dissipation during rockfall impacts. Tree Physiology, 26(1), 63 - 71. https://doi.org/10.1093/treephys/26.1.63
Flageollet, J.C. (1989). Les mouvements de terrain et leur prévention. Collection géographie. Edition Masson.
Frayssines, M., & Hantz, D. (2006). Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges (French Alps). Engineering Geology, 86(4), 256-270. https://doi.org/10.1016/j.enggeo.2006.05.009
Gruber, S. & Haeberli, W. (2007). Permafrost in steep bedrock slopes and its temperature-related destabilization following climate chang. Journal of Geophysical Research. Earth Surface,112(2), F02S18. https://doi.org/10.1029/2006JF000547
Gruber, S., Hoelzle, M., & Haeberli, W. (2004). Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophysical Research Letters, 31(13), L13504. https://doi.org/10.1029/2004GL020051
Hanchane, M., & Janati Idrissi, A. (2012, 23-24 Mai). SIG et modélisation du risque de feu de forêts dans la forêt de Bab Azhar (Taza-Maroc). Colloque International des Utilisateurs de SIG, Taza GIS-Days, 23-24 Mai 2012.
Hanchane, M. (2007, 20-21 avril). Evaluation du risque d’incendies de forêts dans la Province de Taza. Colloque International «Dynamiques territoriales: des potentialités et développement durable». Faculté des LSH de Dhar Mehraz (Fès). Le 19 - 20 -21 avril 2007.
He´tu, B., & Gray J.T. (2000). Effects of environmental change on scree slope development throughout the postglacial period in the Chic-Choc Mountains in the northern Gaspe´ Peninsula, Que´bec. Geomorphology, 32(3-4), 335-355. https://doi.org/10.1016/S0169-555X(99)00103-8
Heim, A. (1882). Ueber Bergsturze. Natur. Gesell. Zürich, 83, 31.
Hinaje, S., & Ait Brahim, L. (2001). Neotectonic and seismotectonic events recorded by quaternary deposits in the Middle Atlas (Morocco). Second Workshop on Seismic Risk in North Africa (Tetouan, 2001).
Irifi, H. (2024). Argania spinosa and Tetraclinis articulata seedling regeneration factors in the lower valley of Wadi Tamri (Morocco). Revista de Estudios Andaluces, (48), 13 -150.
Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), 283 - 353. https://doi.org/10.1016/S1365-1609(03)00013-3
Lamouroux, M. (1967). Altération des roches dures carbonatées. Hannon - Revue libanaise de géographie, extrait du volume II.
Laville, E., & Faden, B. (1989). The Moroccan Atlasic system in the Jurassic: Structural evolution and geodynamic framework. Sciences Géologiques, bulletins et mémoires, 84, 3 - 28.
Losasso, L., & Sdao, F., (2018). The artificial neural network for the rockfall susceptibility assessment. A case study in Basilicata (Southern Italy). Géomatics, Natural Hazards and Risk, 9(1), 737 -759. https://doi.org/10.1080/19475705.2018.1476413
Malsam, A., & Gabriel, W. (2024). Seasonality of rockfall triggers and conditioning factors interpreted from a lidar-derived rockfall database. Engineering Geology, 333, 107500. https://doi.org/10.1016/j.enggeo.2024.107500
Mathieu, L., & EK, C. (1964). The Daia Chikker : Geo-morphological study. Annals of the Geological Society of Belgium, 87(15), 65 - 103.
Matsuoka, N. (2019). A multi-method monitoring of timing, magnitude and origin of rockfall activity in the Japanese Alps. Geomorphology, 336, 65-76. https://doi.org/10.1016/j.geomorph.2019.03.023
Michard, A. (1976). Elément de géologie marocaine. Notes et Mém. Serv. Géol. Maroc, 252.
Millies-Lacroix, A. (1981). Classification des talus et versants instables. Risques géologiques, Mouvements de terrain. 26e Congrès Géologique International, section 17. Bull. liaison labo. Ponts & Chaussées, Paris, 55 - 62.
Molitor, D. (1984). Landslide. Journal of the Indian Society of Photo-Interpretation and Remote Sensing, 12, 132-25. https://doi.org/10.1007/BF02991432
Mokhtari, M., Abedian, S., & Almasi, S. (2020). Rock fall Susceptibility Mapping Using Artificial Neural Network, Frequency Ratio, and Logistic Regression: A Case Study in Central Iran, Taft County. AUT Journal of Civil Engineering, 4, 63 -80.
Moos, C., Dorren, L., & Stofel, M. (2017). Quantifying the efect of forests on frequency and intensity of rockfalls. Natural Hazards and Earth System Sciences, 17(2), 291-304. https://doi.org/10.5194/nhess-17-291-2017
Naoura, J. (2012). Caractérisation hydrologique et qualitative des eaux de surface du bassin versant du haut Inaouene. [Thèse de Doctorat, Université Sidi Mohamed Ben Abdellah, Fès (Maroc)].
Paranunzio, R., Laio, F., Chiarle, M., Nigrelli, G., & Guzzetti, F. (2016). Climate anomalies associated with the occurrence of rockfalls at high-elevation in the Italian Alps. Natural Hazards and Earth System Sciences, 16(9). https://doi.org/10.5194/nhess-16-2085-2016
Penck, A. (1894). Morphologie der Erdoberflache. J. Engelhorns, Stuttgart. Vol. I, 471 p., Vol. II, 696 p. https://doi.org/10.5962/bhl.title.130468
Ramdani, M., & Tadili, B. (1980). Sismicité détaillée du Moyen Atlas et sondages sismiques profonds dans le Maroc central. [Thèse 3ème cycle, Univ. Grenoble I].
Rapp, A. (1960). Literature on slope denudation in Finland, Iceland, Norway. Spitsbergen and Sweden. Zeitschrift fur Geomorphologie, I, 33 - 48.
Ravanel, L., Magnin, F., & Deline. P. (2017). Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. The Science of The Total Environment 609, 132-143. https://doi.org/10.1016/j.scitotenv.2017.07.055
Reynolds, S.H. (1932). Landslips. Proc. Bris. Nat. Soc., 7, 352 - 357.
Sabaoui, A. (1998). Rôles des inversions dans l’évolution méso-cénozoïque du Moyen Atlas septentrional (Maroc). L’exemple de la transversale EL Menzel - Ribat al Khayr - Bou Iblane. [Thèse Doct. Etat, Rabat].
Shirzadi, A., Saro, L., Joo, O.H., & Chapi, K. (2012). A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Nat. Hazards, 64, 1639 - 1656. https://doi.org/10.1007/s11069-012-0321-3
Vargas, E., Velloso, R.Q., Chavez, L.E., Gusmao, L., & Do Amaral C.P. (2013). On the Effect of Thermally Induced Stresses in Failures of Some Rock Slopes in Rio de Janeiro, Brazil. Rock Mechanics and Rock Engineering, 46, 123-134. https://doi.org/10.1007/s00603-012-0247-9
Ward, W.H. (1945). The stability of natural slopes. Geographical Journal, (105), 170 - 197. https://doi.org/10.2307/1789732
Whalley, J., & Yeung, B. (1984). External sector ‘closing’ rules in applied general equilibrium models. Journal of International Economics, 16, 123 - 138. https://doi.org/10.1016/0022-1996(84)90046-1
Zielonka, A., & Wrońska-Wałach, D. (2019). Can we distinguish meteorological conditions associated with rockfall activity using dendrochronological analysis? - n example from the Tatra Mountains (Southern Poland). Science of The Total Environment, 662, 422 - 433. https://doi.org/10.1016/j.scitotenv.2019.01.243
Zitane, A. (1986). Les feux de forêt au Maroc. R.G.M., Vol. 11, nouvelle série, n°1. 83-100.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Mohamed BENAISSA, Jaouad Gartet

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La edición electrónica de la Revista de Estudios Andaluces se ofrece en acceso abierto desde el número 28 publicado en 2011 hasta la actualidad. Las ediciones impresa y electrónica de esta Revista son editadas por la Editorial de la Universidad de Sevilla, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
La Revista de Estudios Andaluces no cobra tasas por el envío de trabajos, ni tampoco cuotas por la publicación de sus artículos. La Revista es gratuita desde el momento de la publicación de cada número y sus contenidos se distribuyen con la licencia “CreativeCommons Atribución-NoComercial-SinDerivar 4.0 Internacional” , que permite al usuario de la Revista de Estudios Andaluces criterios que cumplen con la definición de open access de la Declaración de Budapest en favor del acceso abierto. Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.




