El Machine bias in Criminal Procedure
DOI:
https://doi.org/10.12795/IETSCIENTIA.2020.i02.05Abstract
Artificial intelligence has countless advantages in our lives. On the one hand, computer’s capacity to store and connect data is far superior to human capacity. On the other hand, its “intelligence” also involves deep ethical problems that the law must respond to. I say “intelligence” because nowadays machines are not intelligent. Machines only use the data that a human being has previously offered as true. The truth is relative and the data will have the same biases and prejudices as the human who programs the machine. In other words, machines will be racist, sexist and classist if their programmers are. Furthermore, we are facing a new problem: the difficulty to understand the algorithm of those who apply the law.This situation forces us to rethink the criminal process, including artificial intelligence and spinning very thinly indicating how, when, why and under what assumptions we can make use of artificial intelligence and, above all, who is going to program it. At the end of the day, as Silvia Barona indicates, perhaps the question should be: who is going to control global legal thinking?
Downloads
References
ANGWIN, J.; LARSON, J.; MATTU, S.; KIRCHNER, L., “Machine Bias. There’s software used across the country to predict future criminals. And it’s biased against blacks”, en ProPublica, 2016.
AVILÉS PALACIOS, L., “La perspectiva de género como técnica jurídica e instrumento necesario para una justicia igualitaria”, en: AAVV, Análisis de la Justicia desde la perspectiva de género, Tirant Lo Blanch, Valencia, 2018.
BAMBAUER, J.; ROGERS, J. E., “The Algorithm Game”, Notre Dame Law Review, núm. 1, 2018.
BARONA VILAR, S., “La necesaria deconstrucción del modelo patriarcal de justicia”, en: AAVV, Análisis de la Justicia desde la perspectiva de género, Tirant Lo Blanch, Valencia, 2018.
BARONA VILAR, S., “Inteligencia artificial o la algoritmización de la vida y de la justicia: ¿solución o problema?”, Rev. Boliv. de Derecho, núm. 28, 2019.
BERK, R.; HEIDARIC, H.; JABBARIC, S.; KEARNSC, M.; ROTH; A., “Fairness in Criminal Justice Risk Assessments: The State of the Art”, Berk, 2017.
COCA VILA, I., “Self-driving Cars in Dilemmatic Situations: An Approach Base don the Theory of Justification in Criminal Law”, Criminal Law and Philosophy, vol. 12, núm,. 1, 2018.
COUNCIL OF EUROPE COMMISSIONER FOR HUMAN RIGHTS, Unboxing Artificial Intelligence: 10 steps to protect Human Rights, 2019.
DE LA OLIVA SANTOS, A., “Justicia predictiva, interpretación matemática de las normas, sentencias robóticas y la vieja historia del ‘juztizklavier’”, El Cronista del Estado Social y Democrático de Derecho, núm. 50.
EUROPEAN COMMISSION, Brussels, 25.4.2018 COM (2018) 237 final, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. Artificial Intelligence for Europe, {SWD(2018) 137 final}, 2018.
EUROPEAN PARLIAMENT, Understanding algorithmic decision-making: Opportunities and challenges, 2019.
FERRAJOLI, L., La ley del más débil, Editorial Trotta, 7 edición, 2010.
FRA, BigData: Discrimination in data-supported decision making, 2018, p. 2.BARONA VILAR, Silvia, “Cuarta revolución industrial (4.0.) o ciberindustria en el proceso penal: revolución digital, inteligencia artificial y el camino hacia la robotización de la justicia”, Revista Jurídica Digital UANDES, vol. 3, núm. 1, 2019.
GUTIERREZ-SOLANA JOURNOUD, A., “La invisible perspectiva de género del TJUE en asuntos que afectan exclusivamente a las mujeres: generalidad frente a especificidad”, en: ETXEBARRÍA ESTANKONA, K.; ORDEÑANA GEZURAGA, I.; OTAUZA ZABALA, G. (Dirs.) Justicia con ojos de mujer. Cuestiones procesales controvertidas, Tirant Lo Blanch, Valencia, 2018.
LAMMERANT, H., DE HERT, P. “Predictive profiling and its legal limits: Effectiveness gone forever” en: VAN DER SLOOT, B.; BROEDERS, D.; SCHRIJVERS, E. (eds.), Exploring the boundaries of big data. Amsterdam University Press/WRR, vol. 32, 2016.
MARTÍNEZ GARAY, L., “Peligrosidad, Algoritmos y Due Process: el Caso State v Loomis”, en Revista de Derecho Penal Y Criminología, núm. 20, 2018.
MARTÍNEZ GARCÍA, E., “Análisis de la justicia procesal desde la perspectiva de género”, Proyecto de investigación, Segundo ejercicio de Cátedra inédito defendido en la Universidad de Valencia, 2018.
MARTÍNEZ GARCÍA, E., “Capítulo 14: Posibilidades reales que ofrece la mediación penal en los procesos por violencia de género: violencia leve, primaria, perfiles de las partes y modelo procesal recomendable”, en: BARONA VILAR, Silvia (ed.), Justicia civil y penal en la era global, Tirant Lo Blanch, Valencia, 2017.
MAYSON, S. G., “Bias In, Bias Out”, en The Yale Law Journal, 2019.
MIRÓ LLINARES, F., “El modelo policial que viene: mitos y realidades del impacto de la inteligencia artificial y la ciencia de datos en la prevención policial del crimen” en: Libro Blanco de la Prevención y Seguridad Local Valenciana, 2019.
MIRÓ LLINARES, F., “Inteligencia artificial y justicia penal: más allá de los resultados lesivos causados por robots”, Revista de Derecho Penal y Criminología, núm. 20, 2018.
O’DONNELL, R. M., “Challenging racist predictive policing algorithms under the equal protection clause”, 2019, New York University Law Review, vol. 94, núm. 3.
OSWALD, M.; GRACE, J.; URWIN S.; BARNES, G. C., “Algorithmic risk assessment policing models: lessons from the Durham HART model and ‘Experimental’ proportionality”, Information & Communications Technology Law, vol. 27, núm. 2, 2018.
PALMA ARTIGOSA, A., “La inteligencia artificial en la toma de decisiones automatizadas. Análisis técnico de las fases que comprenden el desarrollo e implantación de los sistemas inteligentes”, en prensa.
PÉREZ ESTRADA, M. J., “Capítulo XI. El uso de algoritmos en el proceso penal y el derecho a un proceso con todas las garantías”, en: BARONA VILAR, Silvia, Claves de la Justicia Penal. Feminización, Inteligencia Artificial, Supranacionalidad y Seguridad, Tirant Lo Blanch, 2019.
Downloads
Published
How to Cite
Issue
Section
License
Those authors being published in this journal agree to the following terms:
- Authors retain their copyright and they will guarantee to the journal the right of first publication of their work, which will be simultaneously subject to license recognition by Creative Commons that allows others to share such work provided it is stated the author’s name and his first publishing in IUS ET SCIENTIA.
- Authors may take other non-exclusive distribution license agreements version of the published work (e.g. deposit in an institutional digital file or publish it in a monographic volume) provided it is stated the initial publication in this journal.
- It is allowed and encouraged that Author s disseminate their work via the Internet (e. g. institutional digital files or on their website) prior to and during the submission process, which can lead to interesting exchanges and to increase citation of the published work.
- Abstract 1431
- pdf (Español (España)) 1315